Skip to main content

Clinical Proteomics in Molecular Genetic Pathology

  • Reference work entry
  • First Online:
Molecular Genetic Pathology

Abstract

Patient tissue specimens contain a wealth of potential diagnostic molecular descriptors. Clinical proteomics is a field that combines components of classical protein detection technologies with new technologies to create high-throughput assays that effectively utilize the proteomic information available in the limited sample volumes that are most commonly obtained in the clinical setting. Protein microarrays provide a means for measuring the levels of disease-related proteins extracted from patient tissues, and our laboratory developed the reverse-phase microarray to define the contribution of specific protein activation states to various cancer disease processes. Preservation and stabilization of the in vivo protein signaling architecture is critical for clinical applications, and new tissue fixatives have been recently developed to minimize sources of preanalytical variables. Mass spectrometry, a highly sensitive proteomics tool, is now widely used as an analytical method to discover and catalog disease-related proteins in solid tissues and body fluids such as plasma, serum, and cerebrospinal fluid. Peptidomic and low-molecular-weight proteomics is an important emerging niche in protein biomarker research that requires both analyte concentration and size exclusion simultaneously. New core-shell hydrogel nanoparticles have been developed for one-step, high-throughput low-molecular-weight biomarker concentration, size filtration, and preservation for downstream mass spectrometry analysis and biomarker discovery. Using these new methods, the proteomics field is poised to greatly accelerate tissue and body fluid biomarker discovery, validation, and clinical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Anderson NL, Anderson NG. The human plasma proteome: history character, and diagnostic prospects. Mol Cell Proteomics. 2002;1:845–67.

    Article  PubMed  CAS  Google Scholar 

  • Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411:355–65.

    Article  PubMed  CAS  Google Scholar 

  • Celis JE, Gromov P. Proteomics in translational cancer research: toward an integrated approach. Cancer Cell. 2003;3:9–15.

    Article  PubMed  CAS  Google Scholar 

  • Chaurand P, Caprioli RM. Direct profiling and imaging of peptides and proteins from mammalian cells and tissue sections by mass spectrometry. Electrophoresis. 2002;23:3125–35.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch EW, Eng JK, Zhang H, et al. Human plasma peptide atlas. Proteomics. 2005;5:3497–500.

    Article  PubMed  CAS  Google Scholar 

  • Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science. 1996;274:998–1001.

    Article  PubMed  CAS  Google Scholar 

  • Espina V, Mueller C. Reduction of preanalytical variability in specimen procurement for molecular profiling. Methods Mol Biol. 2012;823:49–57.

    Article  PubMed  CAS  Google Scholar 

  • Espina V, Wulfkuhle JD, Calvert VS, et al. Laser capture microdissection. Nat Protoc. 2006;1:586–603.

    Article  PubMed  CAS  Google Scholar 

  • Espina V, Wulfkuhle J, Calvert VS, et al. Reverse phase protein microarrays for theranostics and patient-tailored therapy. Methods Mol Biol. 2008;441:113–28.

    Article  PubMed  CAS  Google Scholar 

  • Espina V, Mueller C, Edmiston K, et al. Tissue is alive: new technologies are needed to address the problems of protein biomarker pre-analytical variability. Proteomics Clin Appl. 2009;3:874–82.

    Article  PubMed  CAS  Google Scholar 

  • Fredolini C, Meani F, Reeder KA, et al. Concentration and preservation of very low abundance biomarkers in urine, such as human growth hormone (hGH), by cibacron blue F3G-A loaded hydrogel particles. Nano Res. 2008;1:502–18.

    Article  PubMed  CAS  Google Scholar 

  • Fredolini C, Meani F, Luchini A, et al. Investigation of the ovarian and prostate cancer peptidome for candidate early detection markers using a novel nanoparticle biomarker capture technology. AAPS J. 2010;12:504–18.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher RI, Silvestri A, Petricoin 3rd EF, et al. Reverse phase protein microarrays: fluorometric and colorimetric detection. Methods Mol Biol. 2011;723:275–301.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher RI, Blakely SR, Liotta LA, et al. Laser capture microdissection: Arcturus(XT) infrared capture and UV cutting methods. Methods Mol Biol. 2012;823:157–78.

    Article  PubMed  CAS  Google Scholar 

  • Grubb RL, Deng J, Pinto PA, et al. Pathway biomarker profiling of localized and metastatic human prostate cancer reveal metastatic and prognostic signatures. J Proteome Res. 2009;8:3044–54.

    Article  PubMed  CAS  Google Scholar 

  • Gulmann C, Espina V, Petricoin E, et al. Proteomic analysis of apoptotic pathways reveals prognostic factors in follicular lymphoma. Clin Cancer Res. 2005;11:5847–55.

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Aebersold R. Mass spectrometry and proteomics. Curr Opin Chem Biol. 2000;4:489–94.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann PC, Gillespie JW, Charboneau L, et al. Mitochondrial proteome: altered cytochrome c oxidase subunit levels in prostate cancer. Proteomics. 2003;3:1801–10.

    Article  PubMed  CAS  Google Scholar 

  • Hillenkamp F, Karas M. Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Methods Enzymol. 1990;193:280–95.

    Article  PubMed  CAS  Google Scholar 

  • Knezevic V, Leethanakul C, Bichsel VE, et al. Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics. 2001;1:1271–8.

    Article  PubMed  CAS  Google Scholar 

  • Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature. 2001;411:375–9.

    Article  PubMed  CAS  Google Scholar 

  • Liotta LA, Kohn EC, Petricoin EF. Clinical proteomics: personalized molecular medicine. JAMA. 2001;286:2211–4.

    Article  PubMed  CAS  Google Scholar 

  • Longo C, Patanarut A, George T, et al. Core-shell hydrogel particles harvest, concentrate and preserve labile low abundance biomarkers. PLoS One. 2009;4:e4763.

    Article  PubMed  CAS  Google Scholar 

  • Lowenthal MS, Mehta AI, Frogale K, et al. Analysis of albumin-associated peptides and proteins from ovarian cancer patients. Clin Chem. 2005;51:1933–45.

    Article  PubMed  CAS  Google Scholar 

  • Luchini A, Geho DH, Bishop B, et al. Smart hydrogel particles: biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation. Nano Lett. 2008;8:350–61.

    Article  PubMed  CAS  Google Scholar 

  • Meani F, Pecorelli S, Liotta L, et al. Clinical application of proteomics in ovarian cancer prevention and treatment. Mol Diagn Ther. 2009;13:297–311.

    Article  PubMed  CAS  Google Scholar 

  • Mehta AI, Ross S, Lowenthal MS, et al. Biomarker amplification by serum carrier protein binding. Dis Markers. 2003;19:1–10.

    PubMed  CAS  Google Scholar 

  • Mueller C, Edmiston KH, Carpenter C, et al. One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens. PLoS One. 2011;6:e23780.

    Article  PubMed  CAS  Google Scholar 

  • Nita-Lazar A, Saito-Benz H, White FM. Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics. 2008;8:4433–43.

    Article  PubMed  CAS  Google Scholar 

  • Paweletz CP, Charboneau L, Bichsel VE, et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene. 2001;20:1981–9.

    Article  PubMed  CAS  Google Scholar 

  • Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA. Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov. 2002;1:683–95.

    Article  PubMed  CAS  Google Scholar 

  • Petricoin 3rd EF, Espina V, Araujo RP, et al. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res. 2007;67:3431–40.

    Article  PubMed  CAS  Google Scholar 

  • Pierobon M, Vanmeter AJ, Moroni N, et al. Reverse-phase protein microarrays. Methods Mol Biol. 2012;823:215–35.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt KP, Bryant-Greenwood P, Killian JK, et al. Serum proteomics in cancer diagnosis and management. Annu Rev Med. 2004;55:97–112.

    Article  PubMed  CAS  Google Scholar 

  • Silvestri A, Colombatti A, Calvert VS, et al. Protein pathway biomarker analysis of human cancer reveals requirement for upfront cellular-enrichment processing. Lab Invest. 2010;90:787–96.

    Article  PubMed  CAS  Google Scholar 

  • Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med. 2001;7:493–6.

    Article  PubMed  CAS  Google Scholar 

  • Tamburro D, Fredolini C, Espina V, et al. Multifunctional core-shell nanoparticles: discovery of previously invisible biomarkers. J Am Chem Soc. 2011;133:19178–88.

    Article  PubMed  CAS  Google Scholar 

  • Wolf-Yadlin A, Sevecka M, MacBeath G. Dissecting protein function and signaling using protein microarrays. Curr Opin Chem Biol. 2009;13:398–405.

    Article  PubMed  CAS  Google Scholar 

  • Wulfkuhle JD, McLean KC, Paweletz CP, et al. New approaches to proteomic analysis of breast cancer. Proteomics. 2001;1:1205–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Geho, D.H., Espina, V., Liotta, L.A., Petricoin, E.F., Wulfkuhle, J.D. (2013). Clinical Proteomics in Molecular Genetic Pathology. In: Cheng, L., Zhang, D., Eble, J. (eds) Molecular Genetic Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4800-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4800-6_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4799-3

  • Online ISBN: 978-1-4614-4800-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics