Skip to main content

4HNE Protein Adducts in Autistic Spectrum Disorders: Rett Syndrome and Autism

  • Reference work entry
Comprehensive Guide to Autism

Abstract

Autistic spectrum disorders (ASDs) are a complex group of neurodevelopment disorders, still poorly understood and treatment refractory. They are considered to be the result of a complex interaction between a genetic background and environmental factors and appear to be steadily increasing in frequency, although the reasons for this increase remain partially unexplained.

Oxidative stress (OS) is a well-known pathogenic mechanism involved in several human pathologies. By definition, OS occurs when the antioxidant response is insufficient to balance the production of reactive oxygen species (ROS) leading to cell damage and developing or worsening of several pathologies.

Brain is particularly vulnerable to ROS damage compared to other organs, due to its high metabolic rate combined with a relatively low concentration of antioxidant proteins. OS and mitochondrial dysfunction have been implicated in all major neurodegenerative disorders (i.e., amyotrophic lateral sclerosis, Parkinson’s and Alzheimer’s disease), and a potential relationship between OS and ASDs has been repeatedly explored and generally found to be related to either increased OS or altered antioxidant defenses.

Nevertheless, even if several OS biomarkers have been the focus of researches on ASDs, only recent works from our group were able to show the increased levels of 4-hydroxynonenal protein adducts (4HNE PAs) in both classic autism and Rett syndrome (RTT), two of neurodevelopmental disorders that are part of the complex group of ASDs.

4HNE is an aldehyde end product generated by peroxidation of the most abundant class of ω-6 polyunsaturated fatty acids (PUFAs), and its reactivity is due to α,β-double bond. In consequence of its ability to covalently bind proteins, phospholipids, and DNA, it is recognized as “second toxic messenger” of free radicals. Oxidative protein modifications by 4HNE possess the potential to have serious detrimental effects in living organisms since they lead to alteration in their structure and biological activity, having also the potential to form cross-links in proteins.

4HNE PAs are observed in typical and atypical RTT and their levels change as a function of the time (clinical stages of typical form) and of phenotype severity (different clinical variants). Moreover, a systemic oxidant status with increased 4HNE PAs levels is also detected in classic autistic disorder. Thus, our researches showed that OS, i.e., 4HNE PAs, is present in both classic autism and RTT and that oxidative protein damage could play a key role in the pathogenic mechanisms of ASDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, Zappia I, Newmark S, Gehn E, Rubin RA, Mitchell K, Bradstreet J, El-Dahr JM. The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J Toxicol. 2009;2009:532640.

    PubMed  Google Scholar 

  • Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab. 2011a;8:34.

    Article  Google Scholar 

  • Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011b;11:22.

    Article  PubMed  Google Scholar 

  • Al-Gadani Y, El-Ansary A, Attas O, Al-Ayadhi L. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem. 2009;42:1032–40.

    Article  PubMed  Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutation in X–linked MECP2, encoding methyl–CpG–binding protein 2. Nat Genet. 1999;23:185–8.

    Article  PubMed  Google Scholar 

  • Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A, Pollazzon M, Buoni S, Spiga O, Ricciardi S, Meloni I, Longo I, Mari F, Broccoli V, Zappella M, Renieri A. FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet. 2008;83:89–93.

    Article  PubMed  Google Scholar 

  • Bayou N, M’rad R, Ahlem B, Béchir Helayem M, Chaabouni H. Autism: an overview of genetic aetiology. Tunis Med. 2008;86:573–8.

    PubMed  Google Scholar 

  • Behl A, Swami G, Sircar SS, Bhatia MS, Banerjee BD. Relationship of possible stress-related biochemical markers to oxidative/antioxidative status in obsessive-compulsive disorder. Neuropsychobiology. 2010;61:210–4.

    Article  PubMed  Google Scholar 

  • Blanc EM, Kelly JF, Mark RJ, Waeg G, Mattson MP. 4-Hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on G alpha(q/11). J Neurochem. 1997;69:570–80.

    Article  PubMed  Google Scholar 

  • Bošković M, Vovk T, Kores Plesničar B, Grabnar I. Oxidative stress in schizophrenia. Curr Neuropharmacol. 2011;9:301–12.

    Article  PubMed  Google Scholar 

  • Butterfield DA, Reed T, Sultana R. Roles of 3-nitrotyrosine- and 4-hydroxynonenal-modified brain proteins in the progression and pathogenesis of Alzheimer’s disease. Free Radic Res. 2011;45:59–72.

    Article  PubMed  Google Scholar 

  • Bymaster FP, Felder CC. Role of the cholinergic muscarinic system in bipolar disorder and related mechanism of action of antipsychotic agents. Mol Psychiatry. 2002;7:57–63.

    Article  Google Scholar 

  • Calder PC, Yaqoob P. Understanding omega-3 polyunsaturated fatty acids. Postgrad Med. 2009;121:148–57.

    Article  PubMed  Google Scholar 

  • Chauhan A, Chauhan V. Oxidative stress in autism. Pathophysiology. 2006;13:171–81.

    Article  PubMed  Google Scholar 

  • Chauhan A, Audhya T, Chauhan V. Brain region-specific glutathione redox imbalance in autism. Neurochem Res. 2012;37:1681–9.

    Article  PubMed  Google Scholar 

  • Ciccoli L, De Felice C, Paccagnini E, Leoncini S, Pecorelli A, Signorini C, Belmonte G, Valacchi G, Rossi M, Hayek J. Morphological changes and oxidative damage in Rett Syndrome erythrocytes. Biochim Biophys Acta. 2012;1820:511–20.

    Article  PubMed  Google Scholar 

  • Comporti M. Lipid peroxidation and biogenic aldehydes: from the identification of 4-hydroxynonenal to further achievements in biopathology. Free Radic Res. 1998;28:623–35.

    Article  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem. 2006;52:601–23.

    Article  PubMed  Google Scholar 

  • Damodaran LP, Arumugam G. Urinary oxidative stress markers in children with autism. Redox Rep. 2011;16:216–22.

    Article  PubMed  Google Scholar 

  • De Felice C, Ciccoli L, Leoncini S, Signorini C, Rossi M, Vannuccini L, Guazzi G, Latini G, Comporti M, Valacchi G, Hayek J. Systemic oxidative stress in classic Rett syndrome. Free Radic Biol Med. 2009;47:440–8.

    Article  PubMed  Google Scholar 

  • De Felice C, Signorini C, Durand T, Oger C, Guy A, Bultel-Poncé V, Galano JM, Ciccoli L, Leoncini S, D'Esposito M, Filosa S, Pecorelli A, Valacchi G, Hayek J. F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome. J Lipid Res. 2011;52:2287–97.

    Article  PubMed  Google Scholar 

  • De Felice C, Signorini C, Durand T, Ciccoli L, Leoncini S, D'Esposito M, Filosa S, Oger C, Guy A, Bultel-Poncé V, Galano JM, Pecorelli A, De Felice L, Valacchi G, Hayek J. Partial rescue of Rett syndrome by ω-3 polyunsaturated fatty acids (PUFAs) oil. Genes Nutr. 2012a;7:447–58.

    Article  PubMed  Google Scholar 

  • De Felice C, Signorini C, Leoncini S, Pecorelli A, Durand T, Valacchi G, Ciccoli L, Hayek J. The role of oxidative stress in Rett syndrome: an overview. Ann N Y Acad Sci. 2012b;1259:121–35.

    Article  PubMed  Google Scholar 

  • Dubinina EE, Dadali VA. Role of 4-hydroxy-trans-2-nonenal in cell functions. Biochemistry (Mosc). 2010;75:1069–87.

    Article  Google Scholar 

  • Erden-Inal M, Sunal E, Kanbak G. Age-related changes in the glutathione redox system. Cell Biochem Funct. 2002;20:61–6.

    Article  PubMed  Google Scholar 

  • Essa MM, Guillemin GJ, Waly MI, Al-Sharbati MM, Al-Farsi YM, Hakkim FL, Ali A, Al-Shafaee MS. Increased markers of oxidative stress in autistic children of the Sultanate of Oman. Biol Trace Elem Res. 2012;147:25–7.

    Article  PubMed  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11:81–128.

    Article  PubMed  Google Scholar 

  • Farooqui A. Neurochemical aspects of 4-hydroxynonenal. In: Farooqui AA, editor. Lipid mediators and their metabolism in the brain. Springer: New York; 2011. p. 159–91.

    Chapter  Google Scholar 

  • Fernandez-Fernandez S, Almeida A, Bolaños JP. Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J. 2012;443:3–11.

    Article  PubMed  Google Scholar 

  • Fleuranceau-Morel P, Barrier L, Fauconneau B, Piriou A, Huguet F. Origin of 4-hydroxynonenal incubation-induced inhibition of dopamine transporter and Na+/K+ adenosine triphosphate in rat striatal synaptosomes. Neurosci Lett. 1999;277:91–4.

    Article  PubMed  Google Scholar 

  • Formichi P, Battisti C, Dotti MT, Hayek G, Zappella M, Federico A. Vitamin E serum levels in rett syndrome. J Neurol Sci. 1998;156:227–30.

    Article  PubMed  Google Scholar 

  • Ghanizadeh A, Akhondzadeh S, Hormozi M, Makarem A, Abotorabi-Zarchi M, Firoozabadi A. Glutathione-related factors and oxidative stress in autism, a review. Curr Med Chem. 2012;19:4000–5.

    Article  PubMed  Google Scholar 

  • Grune T, Davies KJ. The proteasomal system and HNE-modified proteins. Mol Aspects Med. 2003;24:195–204.

    Article  PubMed  Google Scholar 

  • Hagberg B. Clinical manifestations and stages of rett syndrome. Ment Retard Dev Disabil Res Rev. 2002;8:61–5.

    Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press; 2007.

    Google Scholar 

  • Hayashi M, Miyata R, Tanuma N. Oxidative stress in developmental brain disorders. Adv Exp Med Biol. 2012;724:278–90.

    Article  PubMed  Google Scholar 

  • Herbert MR. Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol. 2010;23:103–10.

    Article  PubMed  Google Scholar 

  • Hermawati D, Then SM, Winarni TI, Faradz SMH, Jamal R. Lower erythrocyte GST activity in autism spectrum disorder (ASD) patients compared to normal controls. Asia-Pacific J Mol Med. 2011;1:2.

    Google Scholar 

  • Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res. 2010;68:261–75.

    Article  PubMed  Google Scholar 

  • Kety SS. “The general metabolism of the brain in vivo”. In: Richter D, editor. Metabolism of the nervous system. London: Pergamon; 1957. p. 221–37.

    Google Scholar 

  • Kugaya A, Sanacora G. Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr. 2005;10:808–19.

    PubMed  Google Scholar 

  • Leoncini S, De Felice C, Signorini C, Pecorelli A, Durand T, Valacchi G, Ciccoli L, Hayek J. Oxidative stress in Rett syndrome: natural history, genotype, and variants. Redox Rep. 2011;16:145–53.

    Article  PubMed  Google Scholar 

  • Libbey JE, Sweeten TL, McMahon WM, Fujinami RS. Autistic disorder and viral infections. J Neurovirol. 2005;11:1–10.

    Article  PubMed  Google Scholar 

  • Lucantoni G, Pietraforte D, Matarrese P, Gambardella L, Metere A, Paone G, Bianchi EL, Straface E. The red blood cell as a biosensor for monitoring oxidative imbalance in chronic obstructive pulmonary disease: an ex vivo and in vitro study. Antioxid Redox Signal. 2006;8:1171–82.

    Article  PubMed  Google Scholar 

  • Mariani E, Polidori MC, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;827:65–75.

    Article  PubMed  Google Scholar 

  • McGinnis WR. Oxidative stress in autism. Altern Ther Health Med. 2004;10:22–36.

    PubMed  Google Scholar 

  • Meguid NA, Dardir AA, Abdel-Raouf ER, Hashish A. Evaluation of oxidative stress in autism: defective antioxidant enzymes and increased lipid peroxidation. Biol Trace Elem Res. 2011;143:58–65.

    Article  PubMed  Google Scholar 

  • Melnyk S, Fuchs GJ, Schulz E, Lopez M, Kahler SG, Fussell JJ, Bellando J, Pavliv O, Rose S, Seidel L, Gaylor DW, James SJ. Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J Autism Dev Disord. 2012;42:367–77.

    Article  PubMed  Google Scholar 

  • Minetti M, Leto TL, Malorni W. Radical generation and alterations of erythrocyte integrity as bioindicators of diagnostic or prognostic value in COPD? Antioxid Redox Signal. 2008;10:829–36.

    Article  PubMed  Google Scholar 

  • Mostafa GA, El-Hadidi ES, Hewedi DH, Abdou MM. Oxidative stress in Egyptian children with autism: relation to autoimmunity. J Neuroimmunol. 2010;219:114–8.

    Article  PubMed  Google Scholar 

  • Nazeer A, Ghaziuddin M. Autism spectrum disorders: clinical features and diagnosis. Pediatr Clin North Am. 2012;59:19–25.

    Article  PubMed  Google Scholar 

  • Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, Leonard H, Bailey ME, Schanen NC, Zappella M, Renieri A, Huppke P, Percy AK, Rett Search Consortium. Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol. 2010;68:944–50.

    Article  PubMed  Google Scholar 

  • Ono H, Sakamoto A, Sakura N. Plasma total glutathione concentrations in healthy pediatric and adult subjects. Clin Chim Acta. 2001;312:227–9.

    Article  PubMed  Google Scholar 

  • Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun. 2012;26:383–92.

    Article  PubMed  Google Scholar 

  • Palmieri L, Persico AM. Mitochondrial dysfunction in autism spectrum disorders: cause or effect?? Biochim Biophys Acta. 2010;1797:1130–7.

    Article  PubMed  Google Scholar 

  • Pecorelli A, Ciccoli L, Signorini C, Leoncini S, Giardini A, D'Esposito M, Filosa S, Hayek J, De Felice C, Valacchi G. Increased levels of 4HNE-protein plasma adducts in Rett syndrome. Clin Biochem. 2011;44:368–71.

    Article  PubMed  Google Scholar 

  • Pecorelli A, Leoncini S, De Felice C, Signorini C, Cerrone C, Valacchi G, et al. Non-protein-bound iron and 4-hydroxynonenal protein adducts in classic autism. Brain Dev. 2013;35:146–54.

    Article  PubMed  Google Scholar 

  • Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, Mattson MP. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol. 1998;44:819–24.

    Article  PubMed  Google Scholar 

  • Perluigi M, Sultana R, Cenini G, Di Domenico F, Memo M, Pierce WM, Coccia R, Butterfield DA. Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer’s disease: role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteomics Clin Appl. 2009;3:682–93.

    Article  PubMed  Google Scholar 

  • Perry SW, Norman JP, Litzburg A, Gelbard HA. Antioxidants are required during the early critical period, but not later, for neuronal survival. J Neurosci Res. 2004;78:485–92.

    Article  PubMed  Google Scholar 

  • Petersen DR, Doorn JA. Reactions of 4-hydroxynonenal with proteins and cellular targets. Free Radical Biol Med. 2004;37:937–45.

    Article  Google Scholar 

  • Poli G, Schaur RJ, Siems WG, Leonarduzzi G. 4-Hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med Res Rev. 2008;28:569–631.

    Article  PubMed  Google Scholar 

  • Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, Coccia R, Markesbery WR, Butterfield DA. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol Dis. 2008;30:107–20.

    Article  PubMed  Google Scholar 

  • Rett A. On a unusual brain atrophy syndrome in hyperammonemia in childhood. Wien Med Wochenschr. 1966;116:723–6.

    PubMed  Google Scholar 

  • Robinson SJ. Childhood epilepsy and autism spectrum disorders: psychiatric problems, phenotypic expression, and anticonvulsants. Neuropsychol Rev. 2012; doi:10.1007/s11065-012-9212-3.

    Google Scholar 

  • Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatr. 2012;2:e134.

    Article  Google Scholar 

  • Santini MT, Straface E, Cipri A, Peverini M, Santulli M, Malorni W. Structural alterations in erythrocytes from patients with chronic obstructive pulmonary disease. Haemostasis. 1997;27:201–10.

    PubMed  Google Scholar 

  • Sayre LM, Moreira PI, Smith MA, Perry G. Metal ions and oxidative protein modification in neurological disease. Ann Ist Super Sanita. 2005;41:143–64.

    PubMed  Google Scholar 

  • Scala E, Ariani F, Mari F, Caselli R, Pescucci C, Longo I, Meloni I, Giachino D, Bruttini M, Hayek G, Zappella M, Renieri A. CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms. J Med Genet. 2005;42:103–7.

    Article  PubMed  Google Scholar 

  • Schauenstein E. Autoxidation of polyunsaturated esters in water: chemical structure and biological activity of the products. J Lipid Res. 1967;8:417–28.

    PubMed  Google Scholar 

  • Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev. 2000;32:307–26.

    Article  PubMed  Google Scholar 

  • Shin Y, White BH, Uh M, Sidhu A. Modulation of D1-like dopamine receptor function by aldehydic products of lipid peroxidation. Brain Res. 2003;968:102–13.

    Article  PubMed  Google Scholar 

  • Shukla V, Mishra SK, Pant HC. Oxidative stress in neurodegeneration. Adv Pharmacol Sci. 2011;2011:572634.

    PubMed  Google Scholar 

  • Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82:291–5.

    PubMed  Google Scholar 

  • Signorini C, De Felice C, Leoncini S, Giardini A, D'Esposito M, Filosa S, Della Ragione F, Rossi M, Pecorelli A, Valacchi G, Ciccoli L, Hayek J. F4-neuroprostanes mediate neurological severity in Rett syndrome. Clin Chim Acta. 2011;412:1399–406.

    Article  PubMed  Google Scholar 

  • Singh VK. Phenotypic expression of autoimmune autistic disorder (AAD): a major subset of autism. Ann Clin Psychiatry. 2009;21:148–61.

    PubMed  Google Scholar 

  • Sofić E, Riederer P, Killian W, Rett A. Reduced concentrations of ascorbic acid and glutathione in a single case of rett syndrome: a postmortem brain study. Brain Dev. 1987;9:529–31.

    Article  PubMed  Google Scholar 

  • Stone JM, Morrison PD, Pilowsky LS. Glutamate and dopamine dysregulation in schizophrenia, a synthesis and selective. J Psychopharmacol. 2007;21:440–52.

    Article  PubMed  Google Scholar 

  • Tandon R, Shipley JE, Greden JF, Mann NA, Eisner WH, Goodson JA. Muscarinic cholinergic hyperactivity in schizophrenia. Relationship to positive and negative symptoms. Schizophr Res. 1991;4:23–30.

    Article  PubMed  Google Scholar 

  • Tao J, Van Esch H, Hagedorn-Greiwe M, Hoffmann K, Moser B, Raynaud M, Sperner J, Fryns JP, Schwinger E, Gécz J, Ropers HH, Kalscheuer VM. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. Am J Hum Genet. 2004;75:1149–54.

    Article  PubMed  Google Scholar 

  • Torres-Ramos YD, Guzman-Grenfell AM, Montoya-Estrada A, Ramirez-Venegas A, Martinez RS, Flores-Trujillo F, Ochoa-Cautino L, Hicks JJ. RBC membrane damage and decreased band 3 phospho-tyrosine phosphatase activity are markers of COPD progression. Front Biosci (Elite Ed). 2010;2:1385–93.

    Article  Google Scholar 

  • Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10:1343–74.

    Article  PubMed  Google Scholar 

  • Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res. 2003;42:318–43.

    Article  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  PubMed  Google Scholar 

  • van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, van der Valk P, de Vries HE. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic Biol Med. 2008;45:1729–37.

    Article  PubMed  Google Scholar 

  • Weaving LS, Christodoulou J, Williamson SL, Friend KL, McKenzie OL, Archer H, Evans J, Clarke A, Pelka GJ, Tam PP, Watson C, Lahooti H, Ellaway CJ, Bennetts B, Leonard H, Gécz J. Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet. 2004;75:1079–93.

    Article  PubMed  Google Scholar 

  • Weintraub K. The prevalence puzzle: autism counts. Nature. 2011;479:22–4.

    Article  PubMed  Google Scholar 

  • Zavitsanou K, Katsifis A, Mattner F, Huang X-F. Investigation of M1⁄M4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology. 2004;29:619–25.

    Article  PubMed  Google Scholar 

  • Zhang Y, Sun Y, Wang F, Wang Z, Peng Y, Li R. Downregulating the canonical Wnt/β-catenin signaling pathway attenuates the susceptibility to autism-like phenotypes by decreasing oxidative stress. Neurochem Res. 2012;37:1409–19.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Valacchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Valacchi, G. et al. (2014). 4HNE Protein Adducts in Autistic Spectrum Disorders: Rett Syndrome and Autism. In: Patel, V., Preedy, V., Martin, C. (eds) Comprehensive Guide to Autism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4788-7_199

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4788-7_199

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4787-0

  • Online ISBN: 978-1-4614-4788-7

  • eBook Packages: Behavioral Science

Publish with us

Policies and ethics