Skip to main content
Log in

Downregulating the Canonical Wnt/β-catenin Signaling Pathway Attenuates the Susceptibility to Autism-like Phenotypes by Decreasing Oxidative Stress

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Although a growing body of evidence supports the importance of the Wnt/β-catenin signaling pathway and oxidative stress in the pathogenesis of autism, it is unclear whether a relationship exists between the Wnt/β-catenin pathway and oxidative homeostasis. The present study examines the effects of sulindac, a small molecule inhibitor of the Wnt/β-catenin signaling pathway, on the oxidative status of rats that are prenatally exposed to valproic acid (VPA), which is used in an animal model of autism. Our data show that sulindac treatment downregulated the canonical Wnt/β-catenin signaling pathway by enhancing the expression of Glycogen Synthase Kinase 3β and attenuating the expression of β-catenin in comparison to levels in VPA-treated rats. Concomitantly, a marker of lipid peroxidation, 4-hydroxynonenal, was reduced as well. Sulindac treatment ameliorated the pain threshold, repetitive/stereotypic activity, learning and memory abilities and behavioral abnormalities of rats in our autism model. Our working model suggests that the upregulation of the Wnt/β-catenin signaling pathway induced by VPA administration during early pregnancy produces an imbalance of oxidative homeostasis that facilitates susceptibility to autism. This information may be instrumental in designing appropriate therapeutic regimens with small molecule inhibitors of the Wnt/β-catenin pathway for the treatment of autism-like behavioral phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6:351–362

    Article  PubMed  CAS  Google Scholar 

  2. Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–369

    Article  PubMed  CAS  Google Scholar 

  3. Brault V, Moore R, Kutsch S et al (2001) Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128:1253–1264

    PubMed  CAS  Google Scholar 

  4. Atkin TA, MacAskill AF, Brandon NJ et al. (2011) Disrupted in Schizophrenia-1 regulates intracellular trafficking of mitochondria in neurons. Mol Psychiatry 16:122–124, 121

    Google Scholar 

  5. Clay HB, Sillivan S, Konradi C (2011) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29:311–324

    Article  PubMed  CAS  Google Scholar 

  6. Yao JK, Reddy RD, van DKP (2001) Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs 15:287–310

    Article  PubMed  CAS  Google Scholar 

  7. Crespi B, Stead P, Elliot M (2010) Evolution in health and medicine Sackler colloquium: comparative genomics of autism and schizophrenia. Proc Natl Acad Sci USA 107(Suppl 1):1736–1741

    Google Scholar 

  8. McGinnis WR (2004) Oxidative stress in autism. Altern Ther Health Med 10:22–36; quiz 37, 92

    Google Scholar 

  9. Chauhan A, Chauhan V, Brown WT et al (2004) Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin—the antioxidant proteins. Life Sci 75:2539–2549

    Article  PubMed  CAS  Google Scholar 

  10. James SJ, Cutler P, Melnyk S et al (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80:1611–1617

    PubMed  CAS  Google Scholar 

  11. Sajdel-Sulkowska EM, Xu M, McGinnis W et al (2010) Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD). Cerebellum 10:43–48

    Article  Google Scholar 

  12. Lee HJ, Wang NX, Shi DL et al (2009) Sulindac inhibits canonical Wnt signaling by blocking the PDZ domain of the protein Dishevelled. Angew Chem Int Ed Engl 48:6448–6452

    Article  PubMed  CAS  Google Scholar 

  13. Stein U, Arlt F, Smith J et al (2011) Intervening in beta-catenin signaling by sulindac inhibits S100A4-dependent colon cancer metastasis. Neoplasia 13:131–144

    PubMed  CAS  Google Scholar 

  14. Lu W, Tinsley HN, Keeton A et al (2009) Suppression of Wnt/beta-catenin signaling inhibits prostate cancer cell proliferation. Eur J Pharmacol 602:8–14

    Article  PubMed  CAS  Google Scholar 

  15. Cho NL, Lin CI, Whang EE et al (2010) Sulindac reverses aberrant expression and localization of beta-catenin in papillary thyroid cancer cells with the BRAFV600E mutation. Thyroid 20:615–622

    Article  PubMed  CAS  Google Scholar 

  16. Sajdel-Sulkowska EM, Xu M, McGinnis W et al (2011) Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD). Cerebellum 10:43–48

    Article  PubMed  CAS  Google Scholar 

  17. Palmieri L, Papaleo V, Porcelli V et al (2010) Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry 15:38–52

    Article  PubMed  CAS  Google Scholar 

  18. James SJ, Rose S, Melnyk S et al (2009) Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J 23:2374–2383

    Article  PubMed  CAS  Google Scholar 

  19. Wang Z, Xu L, Zhu X et al (2010) Demethylation of specific Wnt/beta-catenin pathway genes and its upregulation in rat brain induced by prenatal valproate exposure. Anat Rec (Hoboken) 293(11):1947–1953

    Article  CAS  Google Scholar 

  20. Lemjabbar-Alaoui H, Dasari V, Sidhu SS et al (2006) Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS One 1:e93

    Article  PubMed  Google Scholar 

  21. Huang Y, Chang X, Lee J et al (2011) Cigarette smoke induces promoter methylation of single-stranded DNA-binding protein 2 in human esophageal squamous cell carcinoma. Int J Cancer 128:2261–2273

    Article  PubMed  CAS  Google Scholar 

  22. Rice PL, Kelloff J, Sullivan H et al (2003) Sulindac metabolites induce caspase- and proteasome-dependent degradation of beta-catenin protein in human colon cancer cells. Mol Cancer Ther 2:885–892

    PubMed  CAS  Google Scholar 

  23. Orner GA, Dashwood WM, Blum CA et al (2003) Suppression of tumorigenesis in the Apc(min) mouse: down-regulation of beta-catenin signaling by a combination of tea plus sulindac. Carcinogenesis 24:263–267

    Article  PubMed  CAS  Google Scholar 

  24. Toledo EM, Colombres M, Inestrosa NC (2008) Wnt signaling in neuroprotection and stem cell differentiation. Prog Neurobiol 86:281–296

    Article  PubMed  CAS  Google Scholar 

  25. Schneider T, Przewlocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30:80–89

    Article  PubMed  CAS  Google Scholar 

  26. Schneider T, Turczak J, Przewlocki R (2006) Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: issues for a therapeutic approach in autism. Neuropsychopharmacology 31:36–46

    PubMed  CAS  Google Scholar 

  27. Stokstad E (2001) Development. New hints into the biological basis of autism. Science 294:34–37

    Article  PubMed  CAS  Google Scholar 

  28. Kogan MD, Blumberg SJ, Schieve LA et al (2009) Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. Pediatrics 124:1395–1403

    Article  PubMed  Google Scholar 

  29. Shattuck PT (2006) The contribution of diagnostic substitution to the growing administrative prevalence of autism in US special education. Pediatrics 117:1028–1037

    Article  PubMed  Google Scholar 

  30. Croen LA, Grether JK, Hoogstrate J et al (2002) The changing prevalence of autism in California. J Autism Dev Disord 32:207–215

    Article  PubMed  Google Scholar 

  31. Blaxill MF, Baskin DS, Spitzer WO (2003) Commentary: Blaxill, Baskin, and Spitzer on Croen et al. (2002), the changing prevalence of autism in California. J Autism Dev Disord 33:223–226; discussion 227–229

    Google Scholar 

  32. DiCicco-Bloom E, Lord C, Zwaigenbaum L et al (2006) The developmental neurobiology of autism spectrum disorder. J Neurosci 26:6897–6906

    Article  PubMed  CAS  Google Scholar 

  33. Landrigan PJ (2010) What causes autism? Exploring the environmental contribution. Curr Opin Pediatr 22:219–225

    Article  PubMed  Google Scholar 

  34. Evatt ML, DeLong MR, Grant WB et al (2009) Autism spectrum disorders following in utero exposure to antiepileptic drugs. Neurology 73:997

    Article  PubMed  CAS  Google Scholar 

  35. Bromley RL, Mawer G, Clayton-Smith J et al (2008) Autism spectrum disorders following in utero exposure to antiepileptic drugs. Neurology 71:1923–1924

    Article  PubMed  CAS  Google Scholar 

  36. Ornoy A (2009) Valproic acid in pregnancy: how much are we endangering the embryo and fetus. Reprod Toxicol 28:1–10

    Article  PubMed  CAS  Google Scholar 

  37. Bambini-Junior V, Rodrigues L, Behr GA et al (2011) Animal model of autism induced by prenatal exposure to valproate: behavioral changes and liver parameters. Brain Res 1408:8–16

    Article  PubMed  CAS  Google Scholar 

  38. Rasalam AD, Hailey H, Williams JH et al (2005) Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol 47:551–555

    Article  PubMed  CAS  Google Scholar 

  39. De Ferrari GV, Moon RT (2006) The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene 25:7545–7553

    Article  PubMed  Google Scholar 

  40. Zhang A, Shen CH, Ma SY et al (2009) Altered expression of autism-associated genes in the brain of fragile X mouse model. Biochem Biophys Res Commun 379:920–923

    Article  PubMed  CAS  Google Scholar 

  41. Mines MA, Yuskaitis CJ, King MK et al (2010) GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. PLoS One 5:e9706

    Article  PubMed  Google Scholar 

  42. Takahashi-Yanaga F, Shiraishi F, Hirata M et al (2004) Glycogen synthase kinase-3beta is tyrosine-phosphorylated by MEK1 in human skin fibroblasts. Biochem Biophys Res Commun 316:411–415

    Article  PubMed  CAS  Google Scholar 

  43. Wassink TH, Piven J, Vieland VJ et al (2001) Evidence supporting WNT2 as an autism susceptibility gene. Am J Med Genet 105:406–413

    Article  PubMed  CAS  Google Scholar 

  44. Chenn A, Walsh CA (2003) Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. Cereb Cortex 13:599–606

    Article  PubMed  Google Scholar 

  45. Villagonzalo KA, Dodd S, Dean O et al (2010) Oxidative pathways as a drug target for the treatment of autism. Expert Opin Ther Targets 14:1301–1310

    Article  PubMed  CAS  Google Scholar 

  46. Ounjaijean S, Westermarck T, Partinen M et al (2011) Increase in non-transferrin bound iron and the oxidative stress status in epilepsy patients treated using valproic acid monotherapy. Int J Clin Pharmacol Ther 49:268–276

    PubMed  CAS  Google Scholar 

  47. Zhang B, Wang X, Nazarali AJ (2010) Ascorbic acid reverses valproic acid-induced inhibition of hoxa2 and maintains glutathione homeostasis in mouse embryos in culture. Cell Mol Neurobiol 30:137–148

    Article  PubMed  Google Scholar 

  48. Tung EW, Winn L (2011) Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: a role for oxidative stress in valproic acid-induced neural tube defects. Mol Pharmacol 80:979–987

    Article  PubMed  CAS  Google Scholar 

  49. Wagner GC, Reuhl KR, Cheh M et al (2006) A new neurobehavioral model of autism in mice: pre- and postnatal exposure to sodium valproate. J Autism Dev Disord 36:779–793

    Article  PubMed  Google Scholar 

  50. Tsujino N, Nakatani Y, Seki Y et al (2007) Abnormality of circadian rhythm accompanied by an increase in frontal cortex serotonin in animal model of autism. Neurosci Res 57:289–295

    Article  PubMed  CAS  Google Scholar 

  51. Dufour-Rainfray D, Vourc’h P, Le GAM et al (2010) Behavior and serotonergic disorders in rats exposed prenatally to valproate: a model for autism. Neurosci Lett 470:55–59

    Article  PubMed  CAS  Google Scholar 

  52. Markram K, Rinaldi T, La Mendola D et al (2008) Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology 33:901–912

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 81171299). We thank Dr. Linyun Liu and Dr. Qian Huang for their excellent technical assistance in the behavioral tests of our rat model of autism. We also acknowledge Dr. Weigang Cui for assistance in image processing during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuwen Peng or Ruixi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Sun, Y., Wang, F. et al. Downregulating the Canonical Wnt/β-catenin Signaling Pathway Attenuates the Susceptibility to Autism-like Phenotypes by Decreasing Oxidative Stress. Neurochem Res 37, 1409–1419 (2012). https://doi.org/10.1007/s11064-012-0724-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0724-2

Keywords

Navigation