Skip to main content

Neural Dynamics of Autistic Behaviors: Learning, Recognition, Attention, Emotion, Timing, and Social Cognition

  • Reference work entry
Comprehensive Guide to Autism
  • 394 Accesses

Abstract

A full understanding of a complex spectrum of mental conditions such as autism would show how the brain dynamics of autistic individuals give rise to their behavioral symptoms and how the brain dynamics of normal individuals are changed in autism. This article summarizes neural models that contribute to both goals. One of these neural models is called the iSTART (imbalanced Spectrally Timed Adaptive Resonance Theory) model. iSTART proposes how cognitive, emotional, timing, and motor processes that involve brain regions like the sensory, temporal, and prefrontal cortex; amygdala; hippocampus; cerebellum; and basal ganglia may interact together to create and perpetuate autistic symptoms. These model processes were originally developed as part of the START model to explain data concerning how the brain controls normal behaviors. The iSTART model is a synthesis of three models that shows how autistic behavioral symptoms may arise from prescribed breakdowns in several types of brain processes: underaroused emotional depression in the amygdala and related affective brain regions (Cognitive-Emotional-Motor, or CogEM, model) and how it influences Theory of Mind and hyperreactivity to novel events; high vigilance attentional processing and how it influences the learning of hyperspecific recognition categories and narrow attention in temporal and prefrontal cortices (Adaptive Resonance Theory, or ART, model); and breakdowns of adaptively timed attentional and motor circuits in the hippocampal system, cerebellum, and basal ganglia (Spectral Timing model) and how they may hinder social development and language development. iSTART clarifies how malfunctions in a subset of these mechanisms can, though environmentally mediated feedback, cause and maintain problems with them all. The SMART (Synchronous Matching ART) model additionally proposes how chronically high vigilance may be traced to how acetylcholine is released from the nucleus basalis of Meynert. Finally, the CRIB (Circular Reactions for Imitative Behavior) model clarifies how imitation learning can occur between a student and a teacher who experience the world from different perspectives and how the development of social cognitive capabilities such as joint attention and imitation learning with such a teacher may be impaired by the above problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Banquet JP, Grossberg S. Probing cognitive processes through the structure of event-related potentials during learning: An experimental and theoretical analysis. Applied Optics. 1987;26:4931–4946.

    Article  PubMed  Google Scholar 

  • Barbas H. Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neurosci Biobehav Rev. 1995;19:499–510.

    Article  PubMed  Google Scholar 

  • Baxter MG, Parker A, Lindner CCC, Izquierdo AD, Murray EA. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci. 2000;20:4311–19.

    PubMed  Google Scholar 

  • Belmonte MK, Cook Jr EH, Anderson GM, Rubenstein JL, Greenough WT, Beckel-Mitchener A, Courchesne E, Boulanger LM, Powell SB, Levitt PR, Perry EK, Jiang YH, DeLorey TM, Tierney E. Autism as a disorder of neural information processing: directions for research and targets for therapy (1). Mol Psychiatry. 2004;9(7):646–63.

    PubMed  Google Scholar 

  • Bruner JS. Modalities of memory. In: Talland GA, Waugh NC, editors. The pathology of memory. New York: Academic; 1969. p. 253–9.

    Google Scholar 

  • Carpenter GA. Neural-network models of learning and memory: leading questions and an emerging framework. Trends Cogn Sci. 2001;5:114–18.

    Article  PubMed  Google Scholar 

  • Carpenter GA, Grossberg S. Pattern recognition by self-organizing neural networks. Cambridge, MA: MIT Press; 1991.

    Google Scholar 

  • Carpenter GA, Grossberg S. Normal and amnesic learning, recognition and memory by a neural model of cortico-hippocampal interactions. Trends Neurosci. 1993;16:131–7.

    Article  PubMed  Google Scholar 

  • Church BA, Krauss MS, Lopata C, Toomey JA, Thomeer ML, Coutinho MB, Volker MA, Mercado E. Atypical categorization in children with high-functioning autism spectrum disorder. Psychon Bull Rev. 2010;17:862–8.

    Article  PubMed  Google Scholar 

  • Cohen NJ, Squire LR. Preserved learning and retention of a pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science. 1980;210:207–10.

    Article  PubMed  Google Scholar 

  • Damasio AR. The feeling of what happens: body and emotion in the making of consciousness. Orlando: Harcourt Brace; 2000.

    Google Scholar 

  • Damasio AR, Tranel D, Damasio H. Somatic markers and the guidance of behavior: theory and preliminary testing. In: Levin HS, Eisenberg HM, Benton AL, editors. Frontal lobe function and dysfunction. Oxford: Oxford University Press; 1991. p. 217–29.

    Google Scholar 

  • Deadwyler SA, West MO, Lynch G. Activity of dentate granule cells during learning: differentiation of perforant path inputs. Brain Res. 1979;169:29–43.

    Article  PubMed  Google Scholar 

  • Deadwyler SA, West MO, Robinson JH. Entorhinal and septal inputs differentially control sensory-evoked responses in the rat dentate gyrus. Science. 1981;211:1181–3.

    Article  PubMed  Google Scholar 

  • Desimone R. Visual attention mediated by biased competition in extrastriate visual cortex. Philos Trans R Soc Lond. 1998;353:1245–55.

    Article  Google Scholar 

  • Ebner TJ, Bloedel JR. Correlation between activity of purkinje cells and its modification by natural peripheral stimuli. J Neurophysiol. 1981;45:948–61.

    PubMed  Google Scholar 

  • Eichenbaum H, Otto T, Cohen NJ. Two functional components of the hippocampal memory system. Behav Brain Sci. 1994;17:449–72.

    Article  Google Scholar 

  • Fiala JC, Grossberg S, Bullock D. Metabotropic glutamate receptor activation in cerebellar purkinje cells as substrate for adaptive timing of the classically conditioned eye blink response. J Neurosci. 1996;16:3760–74.

    PubMed  Google Scholar 

  • French RM. Catastrophic forgetting in connectionist networks. Trends Cogn Sci. 1999;3:128–35.

    Article  PubMed  Google Scholar 

  • Gilbert PFC, Thach WT. Purkinje cell activity during motor learning. Brain Res. 1977;128:309–28.

    Article  PubMed  Google Scholar 

  • Gove A, Grossberg S, Mingolla E. Brightness perception, illusory contours, and corticogeniculate feedback. Vis Neurosci. 1995;12:1027–52.

    Article  PubMed  Google Scholar 

  • Grossberg S. Contour enhancement, short term memory, and constancies in reverberating neural networks. Stud Appl Math. 1973;52:217–57. Reprinted in Grossberg S. Studies of mind and brain. Amsterdam: Kluwer; 1982.

    Google Scholar 

  • Grossberg S. How does a brain build a cognitive code? Psychol Rev. 1980;87:1–51.

    Article  PubMed  Google Scholar 

  • Grossberg S. Processing of expected and unexpected events during conditioning and attention: a psychophysiological theory. Psychol Rev. 1982a;89:529–72.

    Article  PubMed  Google Scholar 

  • Grossberg S. Studies of mind and brain: neural principles of learning, perception, development, cognition, and motor control. Hingham: Reidel/Kluwer; 1982b.

    Google Scholar 

  • Grossberg S. Some psychophysiological and pharmacological correlates of a developmental, cognitive and motivational theory. Ann N Y Acad Sci. 1984a;425:58–151.

    Article  PubMed  Google Scholar 

  • Grossberg S. Some normal and abnormal behavioral syndromes due to transmitter gating of opponent processes. Biol Psychiatry. 1984b;19:1075–118.

    PubMed  Google Scholar 

  • Grossberg S, Roberts K, Aguilar M, Bullock D. A neural model of multimodal adaptive saccadic eye movement control by superior colliculus. J Neurosci. 1997;17:9706–9725.

    PubMed  Google Scholar 

  • Grossberg S. How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spat Vis. 1999a;12:163–85.

    Article  PubMed  Google Scholar 

  • Grossberg S. The link between brain learning, attention, and consciousness. Conscious Cogn. 1999b;8:1–44.

    Article  PubMed  Google Scholar 

  • Grossberg S. How hallucinations may arise from brain mechanisms of learning, attention, and volition. J Int Neuropsychol Soc. 2000a;6:583–92.

    Article  PubMed  Google Scholar 

  • Grossberg S. The imbalanced brain: from normal behavior to schizophrenia. Biol Psychiatry. 2000b;48:81–98.

    Article  PubMed  Google Scholar 

  • Grossberg S. How does the cerebral cortex work? Development, learning, attention, and 3D vision by laminar circuits of visual cortex. Behav Cogn Neurosci Rev. 2003;2:47–76.

    Article  PubMed  Google Scholar 

  • Grossberg S, Levine DS. Neural dynamics of attentionally modulated Pavlovian conditioning: blocking, inter-stimulus interval, and secondary reinforcement. Appl Opt. 1987;26:5015–30.

    Article  PubMed  Google Scholar 

  • Grossberg S, Merrill JWL. A neural network model of adaptively timed reinforcement learning and hippocampal dynamics. Cogn Brain Res. 1992;1:3–38.

    Article  Google Scholar 

  • Grossberg S, Merrill JWL. The hippocampus and cerebellum in adaptively timed learning, recognition, and movement. J Cogn Neurosci. 1996;8:257–77.

    Article  PubMed  Google Scholar 

  • Grossberg S, Paine RW. A neural model of cortico-cerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Neural Netw. 2000;13:999–1046.

    Article  PubMed  Google Scholar 

  • Grossberg S, Schmajuk NA. Neural dynamics of attentionally-modulated pavlovian conditioning: conditioned reinforcement, inhibition, and opponent processing. Psychobiology. 1987;15:195–240.

    Google Scholar 

  • Grossberg S, Seidman D. Neural dynamics of autistic behaviors: cognitive, emotional, and timing substrates. Psychol Rev. 2006;113:483–525.

    Article  PubMed  Google Scholar 

  • Grossberg S, Versace M. Spikes, synchrony, and attentive learning by laminar thalamocortical circuits. Brain Res. 2008;1218:278–312.

    Article  PubMed  Google Scholar 

  • Grossberg S, Vladusich T. How do children learn to follow gaze, share joint attention, imitate their teachers, and use tools during social interactions? Neural Netw. 2010;23:940–65.

    Article  PubMed  Google Scholar 

  • Ito M. The cerebellum and neural control. New York: Raven; 1984.

    Google Scholar 

  • Kastner S, Ungerleider LG. The neural basis of biased competition in human visual cortex. Neuropsychologia. 2001;39:1263–76.

    Article  PubMed  Google Scholar 

  • Lisberger SG. The neural basis for motor learning in the vestibulo-ocular reflex in monkeys. Trends Neurosci. 1988;11:147–52.

    Article  PubMed  Google Scholar 

  • Miller EK, Li L, Desimone R. A neural mechanism for working and recognition in inferior temporal cortex. Science. 1991;254:1377–1379.

    Article  PubMed  Google Scholar 

  • Mishkin M. Memory in monkeys severely impaired by combined but not separate removal of the amygdala and hippocampus. Nature. 1978;273:297–8.

    Article  PubMed  Google Scholar 

  • Mishkin M. A memory system in the monkey. Philos Trans R Soc Lond B. 1982;298:85–95.

    Article  Google Scholar 

  • Mishkin M. Cerebral memory circuits. In: Poggio TA, Glaser DA DA, editors. Exploring brain functions: models in neuroscience. New York: Wiley; 1993. p. 113–25.

    Google Scholar 

  • Mishkin M, Aggleton J. Multiple functional contributions of the amygdala in the monkey. In: Ben-Ari Y, editor. The amygdaloid complex. Amsterdam: Elsevier; 1981. p. 409–20.

    Google Scholar 

  • Optican LM, Robinson DA. Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol. 1980;44:108–76.

    Google Scholar 

  • Otto T, Eichenbaum H. Neuronal activity in the hippocampus during delayed non-match to sample performance in rats: evidence for Hippocampal processing in recognition memory. Hippocampus. 1992;2:323–34.

    Article  PubMed  Google Scholar 

  • Page M. Connectionist modeling in psychology: a localist manifesto. Behav Brain Sci. 2000;23:443–512.

    Article  PubMed  Google Scholar 

  • Paine RW, Grossberg S, Van Gemmert AWA. A quantitative evaluation of the AVITEWRITE model of handwriting learning. Hum Mov Sci. 2005;23:837–60.

    Article  Google Scholar 

  • Palma J, Grossberg S, Versace M. Persistence and storage of activity patterns in spiking recurrent cortical networks: modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine. Front Comput Neurosci. 2012. In press.

    Google Scholar 

  • Passingham RE. The frontal lobes and voluntary action. Oxford: Oxford University Press; 1997.

    Google Scholar 

  • Pavlov IP. Conditioned reflexes. London: Constable and Company; 1927. Reprinted by Dover, 1960.

    Google Scholar 

  • Perry EK, Lee MLW, Martin-Ruiz CM, Court JA, Volsen SG, Merrit J, Folly E, Portia E, Iversen PE, Bauman ML, Perry RH, Wenk GL. Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am J Psychiatry. 2001;158:1058–66.

    Article  PubMed  Google Scholar 

  • Piaget J. The origins of intelligence in children. New York: International Universities Press; 1952.

    Book  Google Scholar 

  • Raizada RDS, Grossberg S. Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. Cereb Cortex. 2003;13:100–13.

    Article  PubMed  Google Scholar 

  • Rolls ET. The orbitofrontal cortex. In: Roberts AC, Robbins TW, Weiskrantz L, editors. The prefrontal cortex: executive and cognitive functions. Oxford: Oxford University Press; 1998. p. 67–86.

    Chapter  Google Scholar 

  • Ryle G. The concept of mind. New York: Hutchinson’s University Press; 1949.

    Google Scholar 

  • Schoenbaum G, Setlow B, Saddoris MP, Gallagher M. Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron. 2003;39:855–67.

    Article  PubMed  Google Scholar 

  • Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesion. J Neurol Neurosurg Psychiatry. 1957;20:11–21.

    Article  PubMed  Google Scholar 

  • Smith MC. CS-US interval and US intensity in classical conditioning of the rabbit’s nictitating membrane response. J Comp Physiol Psychol. 1968;3:678–87.

    Google Scholar 

  • Spitzer H, Desimone R, Moran J. Increased attention enhances both behavioral and neuronal performance. Science. 1988;240:338–40.

    Article  PubMed  Google Scholar 

  • Squire LR, Cohen NJ. Human memory and amnesia. In: Lynch G, McGaugh J, Weinberger NM, editors. Neurobiology of learning and memory. New York: Guilford; 1984. p. 3–64.

    Google Scholar 

  • Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science. 1991;253:1380–6.

    Article  PubMed  Google Scholar 

  • Thompson RF. The neural basis of basic associative learning of discrete behavioral responses. Trends Neurosci. 1988;11:152–5.

    Article  PubMed  Google Scholar 

  • Thompson RF, Barchas JD, Clark GA, Donegan N, Kettner RE, Lavond DG, Madden J, Mauk MD, McCormick DA. Neuronal substrates of associative learning in the mammalian brain. In: Aldon DL, Farley J, editors. Primary neural substrates of learning and behavioral change. New York: Cambridge University Press; 1984. p. 71–99.

    Google Scholar 

  • Thompson RF, Clark GA, Donegan NH, Lavond GA, Lincoln DG, Maddon J, Mamounas LA, Mauk MD, McCormick DA. Neuronal substrates of discrete, defensive conditioned reflexes, conditioned fear states, and their interactions in the rabbit. In: Gormenzano I, Prokasy WF, Thompson RF, editors. Classical conditioning. 3rd ed. Hillsdale: Erlbaum Associates; 1987. p. 371–99.

    Google Scholar 

  • Vladusich T, Lafe F, Kim D-S, Tager-Flusberg H, Grossberg S. Prototypical category learning in high-functioning autism. Autism Res. 2010;3:226–36.

    Article  PubMed  Google Scholar 

  • Weinberger NM, Miasnikov AA, Chen JC. The level of cholinergic nucleus basalis activation controls the specificity of auditory associative memory. Neurobiol Learn Mem. 2006;86:270–85.

    Article  PubMed  Google Scholar 

  • Winkowski DE, Knudsen EI. Distinct mechanisms for top-down control of neural gain and sensitivity in the owl optic tectum. Neuron. 2008;60:698–708.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Grossberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Grossberg, S. (2014). Neural Dynamics of Autistic Behaviors: Learning, Recognition, Attention, Emotion, Timing, and Social Cognition. In: Patel, V., Preedy, V., Martin, C. (eds) Comprehensive Guide to Autism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4788-7_190

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4788-7_190

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4787-0

  • Online ISBN: 978-1-4614-4788-7

  • eBook Packages: Behavioral Science

Publish with us

Policies and ethics