Skip to main content

Therapeutic Application of MicroRNAs in Cancer

  • Chapter
  • First Online:
RNA Interference from Biology to Therapeutics

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression thereby controlling many biological and cellular processes, including development, organogenesis, and homeostasis. Due to miRNAs ability to target multiple mRNAs, if miRNA expression is altered, diseases such as cancer can occur as a consequence of the misregulation of target gene networks. Deregulation of miRNA expression in cancer cells is caused by a variety of mechanisms such as genetic alterations, epigenetic regulation, or altered expression of transcription factors, which target miRNAs. Many recent studies have focused on the development of novel diagnostic tools and therapeutics in the field of oncology. In this chapter, we summarize the latest and most significant discoveries for the use of miRNA-based therapy in various physiological and pathological conditions with particular focus on cancer. In addition, we discuss a new method for the delivery of miRNA to a desired site using biologically significant exosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  PubMed  CAS  Google Scholar 

  2. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139

    Article  PubMed  CAS  Google Scholar 

  3. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714

    Article  PubMed  CAS  Google Scholar 

  4. Suzuki HI, Miyazono K (2011) Emerging complexity of microRNA generation cascades. J Biochem 149(1):15–25

    Article  PubMed  CAS  Google Scholar 

  5. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64(11):3753–3756

    Article  PubMed  CAS  Google Scholar 

  6. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    Article  PubMed  CAS  Google Scholar 

  7. Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21(9):1025–1030

    Article  PubMed  CAS  Google Scholar 

  8. Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315(5818):1576–1579

    Article  PubMed  CAS  Google Scholar 

  9. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8(10):806–823

    Article  PubMed  CAS  Google Scholar 

  10. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123

    Article  PubMed  CAS  Google Scholar 

  11. Viswanathan SR, Daley GQ (2010) Lin28: A microRNA regulator with a macro role. Cell 140(4):445–449

    Article  PubMed  CAS  Google Scholar 

  12. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529

    Article  PubMed  CAS  Google Scholar 

  13. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801

    Article  PubMed  CAS  Google Scholar 

  14. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102(39):13944–13949

    Article  PubMed  CAS  Google Scholar 

  15. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14(11):1271–1277

    Article  PubMed  CAS  Google Scholar 

  16. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261

    Article  PubMed  CAS  Google Scholar 

  17. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27(15): 2128–2136

    Article  PubMed  CAS  Google Scholar 

  18. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283(2):1026–1033

    Article  PubMed  CAS  Google Scholar 

  19. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH et al (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27(31):4373–4379

    Article  PubMed  CAS  Google Scholar 

  20. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658

    Article  PubMed  CAS  Google Scholar 

  21. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934

    Article  PubMed  CAS  Google Scholar 

  22. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689

    Article  PubMed  Google Scholar 

  23. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98

    Article  PubMed  CAS  Google Scholar 

  24. Eckstein F (2007) The versatility of oligonucleotides as potential therapeutics. Expert Opin Biol Ther 7(7):1021–1034

    Article  PubMed  CAS  Google Scholar 

  25. Krutzfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T et al (2007) Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 35(9):2885–2892

    Article  PubMed  CAS  Google Scholar 

  26. Preis M, Gardner TB, Gordon SR, Pipas JM, Mackenzie TA, Klein EE et al (2011) MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clin Cancer Res 17(17):5812–5821

    Article  PubMed  CAS  Google Scholar 

  27. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452(7189):896–899

    Article  PubMed  CAS  Google Scholar 

  28. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309(5740):1577–1581

    Article  PubMed  CAS  Google Scholar 

  29. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688

    Article  PubMed  CAS  Google Scholar 

  30. Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125(6):1407–1413

    Article  PubMed  CAS  Google Scholar 

  31. Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S et al (2008) MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology 47(6):1955–1963

    Article  PubMed  CAS  Google Scholar 

  32. Rojas-Fernandez CH, Lapane KL, MacKnight C, Howard KA (2002) Undertreatment of osteoporosis in residents of nursing homes: population-based study with use of the Systematic Assessment of Geriatric Drug Use via Epidemiology (SAGE) database. Endocr Pract 8(5):335–342

    PubMed  Google Scholar 

  33. Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295(5564):2456–2459

    Article  PubMed  CAS  Google Scholar 

  34. Feinberg EH, Hunter CP (2003) Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301(5639):1545–1547

    Article  PubMed  CAS  Google Scholar 

  35. Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK et al (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 25(10):1149–1157

    Article  PubMed  CAS  Google Scholar 

  36. Ochiya T, Takahama Y, Nagahara S, Sumita Y, Hisada A, Itoh H et al (1999) New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nat Med 5(6):707–710

    Article  PubMed  CAS  Google Scholar 

  37. Honma K, Ochiya T, Nagahara S, Sano A, Yamamoto H, Hirai K et al (2001) Atelocollagen-based gene transfer in cells allows high-throughput screening of gene functions. Biochem Biophys Res Commun 289(5):1075–1081

    Article  PubMed  CAS  Google Scholar 

  38. Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M et al (2004) Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 32(13):e109

    Article  PubMed  Google Scholar 

  39. Takeshita F, Minakuchi Y, Nagahara S, Honma K, Sasaki H, Hirai K et al (2005) Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA 102(34):12177–12182

    Article  PubMed  CAS  Google Scholar 

  40. Osaki M, Takeshita F, Sugimoto Y, Kosaka N, Yamamoto Y, Yoshioka Y et al (2011) MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Mol Ther 19(6):1123–1130

    Article  PubMed  CAS  Google Scholar 

  41. Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N et al (2010) Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 18(1):181–187

    Article  PubMed  CAS  Google Scholar 

  42. Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A et al (2011) miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 193(2):409–424

    Article  PubMed  CAS  Google Scholar 

  43. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6):1005–1017

    Article  PubMed  CAS  Google Scholar 

  44. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA et al (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 105(10):3903–3908

    Article  PubMed  CAS  Google Scholar 

  45. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  PubMed  CAS  Google Scholar 

  46. Simons M, Raposo G (2009) Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581

    Article  PubMed  CAS  Google Scholar 

  47. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA 107(14):6328–6333

    Article  PubMed  CAS  Google Scholar 

  48. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144

    Article  PubMed  CAS  Google Scholar 

  49. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285(23):17442–17452

    Article  PubMed  CAS  Google Scholar 

  50. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345

    Article  PubMed  CAS  Google Scholar 

  51. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433

    Article  PubMed  CAS  Google Scholar 

  52. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108(12):5003–5008

    Article  PubMed  CAS  Google Scholar 

  53. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39(16):7223–7233

    Article  PubMed  CAS  Google Scholar 

  54. Wang K, Zhang S, Weber J, Baxter D, Galas DJ (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38(20):7248–7259

    Article  PubMed  CAS  Google Scholar 

  55. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092):537–541

    Article  PubMed  CAS  Google Scholar 

  56. Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS (2009) Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 27(6):549–555

    PubMed  CAS  Google Scholar 

  57. Suzuki HI, Arase M, Matsuyama H, Choi YL, Ueno T, Mano H et al (2011) MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell 44(3):424–436

    Article  PubMed  CAS  Google Scholar 

  58. Chatterjee S, Grosshans H (2009) Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461(7263):546–549

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a Grant-in-Aid for the Third Term Comprehensive 10-Year Strategy for Cancer Control, a Grant-in-Aid for Scientific Research on Priority Areas Cancer from the Ministry of Education, Culture, Sports, Science, and Technology, and the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NiBio), and the Japan Society for the Promotion of Science (JSPS) through the “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)” initiated by the Council for Science and Technology Policy (CSTP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyoshi Kosaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Controlled Release Society

About this chapter

Cite this chapter

Kosaka, N., Takeshita, F., Yoshioka, Y., Ochiya, T. (2013). Therapeutic Application of MicroRNAs in Cancer. In: Howard, K. (eds) RNA Interference from Biology to Therapeutics. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4744-3_14

Download citation

Publish with us

Policies and ethics