Skip to main content

The Time of Maturity

  • Chapter
  • First Online:
Unravelling the Mystery of the Atomic Nucleus
  • 981 Accesses

Abstract

A variety of new accelerators are aimed at creating beams of increasingly energetic particles. New means of detecting and analyzing particles are invented, mostly due to the development of electronic devices which become numerous, varied and flexible, the fruit of apparently unlimited imagination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The deuteron is the heavy hydrogen isotope consisting of a proton and a neutron; see p. 233.

  2. 2.

    According to the Einstein formula E = mc 2, the mass of a proton, which is accelerated to an energy of 10 MeV, increases by about 1%.

  3. 3.

    See p. 275.

  4. 4.

    See p. 275.

  5. 5.

    See p. 278.

  6. 6.

    The klystron was invented in 1937 by Russel and Sigurd Varian to improve the radar technologies. It is a special vacuum tube used as an amplifier at microwave and radio frequencies. The magnetron is a high-powered vacuum tube that generates higher-frequency microwaves using the interaction of a beam of electrons with a constant magnetic field. It was invented in 1940 by the British physicists John Randall and Harry Boot. It allowed to locate airplanes by radar with a better precision.

  7. 7.

    See p. 273.

  8. 8.

    See pages 64, 66, 69, 188.

  9. 9.

    See p. 192.

  10. 10.

    See p. 206.

  11. 11.

    See p. 286.

  12. 12.

    See p. 261.

  13. 13.

    See p. 282.

  14. 14.

    See p. 318.

  15. 15.

    This part of the Mendeleev table, as it was conceived in 1938, is shown on page 331.

  16. 16.

    See p. 107.

  17. 17.

    Recall that the “number of quanta,” also called the principal quantum number n, determines the size and the energy of the electron orbit. See p. 116 and p. 107 for the theory of lanthanides.

  18. 18.

    See p. 112.

  19. 19.

    The periodic table, or table of Mendeleev, in its present form, is shown at the end of this book.

  20. 20.

    See p. 135.

  21. 21.

    See p. 69.

  22. 22.

    See p. 8.

  23. 23.

    fm denotes a femtometer, that is, of 10 − 15 m. It is a natural unit on the nuclear scale: the radius of the oxygen nucleus is about 3 fm, and that of lead about 6.5 fm.

  24. 24.

    See p. 254.

  25. 25.

    See p. 258.

  26. 26.

    See p. 259.

  27. 27.

    See p. 282.

  28. 28.

    But recall that, even if the force does not depend on the orientation of the spins, the Pauli exclusion principle will favor certain spin orientations (see p. 246). Quantum mechanics is most surprising.

  29. 29.

    But not completely identical because the repulsive Coulomb force acts on protons but not on neutrons

  30. 30.

    See p. 20.

  31. 31.

    See p. 233.

  32. 32.

    See p. 258.

  33. 33.

    This shows how careful one must be when using classical terms to describe quantum systems. The Pauli principle, which forbids two identical particles (e.g., two neutrons or two protons) to be in the same state, or, equivalently, to bear the same quantum numbers, has no analogue in classical mechanics. Classical mechanics cannot even account for the experimentally verified fact that there exist identical composite objects, such as, for example, identical atoms. Classical electron orbits of two atoms would never be exactly the same!

  34. 34.

    See p. 329.

  35. 35.

    Nuclei, which have an even number of protons and an even number of neutrons, have a spin zero and a zero magnetic moment.

  36. 36.

    A femtometer (fm) is equal to 10 − 15 m or 10 − 13 cm. Nuclear sizes vary from 1 fm for the proton, the nucleus of hydrogen, to about 7 fm for the radius of the lead nucleus.

  37. 37.

    The word “imaginary” is meant here in the mathematical sense where a complex number has a real and imaginary part.

  38. 38.

    The Oak Ridge National Laboratory in Oak Ridge, Tennessee, had been created during the war, in order to separate uranium 235, required to make an atomic bomb.

  39. 39.

    The National Bureau of Standards is a governmental agency which, since its foundation in 1901, has the role of “working with industry in order to develop and apply technology, measurements and standards” in the interest of the nation. In 1988, it became the National Institute of Standards and Technology (NIST).

  40. 40.

    See p. 313.

  41. 41.

    See p. 313.

  42. 42.

    See p. 15.

  43. 43.

    See p. 128.

  44. 44.

    See p. 182 and p. 206.

  45. 45.

    See p. 232.

  46. 46.

    See p. 114.

  47. 47.

    See p. 182.

  48. 48.

    See p. 243.

  49. 49.

    The term X-rays is usually used to denote photons (particles of light) with energies which range from a dozen to hundreds of thousands of electron volts (eV). The term γ-rays denotes photons with higher energies. The exact frontier is not clearly defined, and one often speaks of hard or soft X-rays. In the entry photon of the glossary, a table is given listing the names given to various radiations according to their energy.

  50. 50.

    See p. 6.

  51. 51.

    More precisely, a cross section ♢.

  52. 52.

    See p. 243.

  53. 53.

    See p. ??.

  54. 54.

    See p. 337.

  55. 55.

    See p. 343.

  56. 56.

    See p. 323.

  57. 57.

    See p. 323.

  58. 58.

    By comparison, the major axis of a rugby football is 50% larger than the minor axis.

  59. 59.

    The nuclei which have an even number of both protons and neutrons are called even–even nuclei.

  60. 60.

    Gertrude Scharff is a German physicist born in Mannheim in 1911. She obtained her Ph.D. in Munich in 1935 after which she was obliged to flee Nazi Germany because she was Jewish. She emigrated to England where she met Maurice Goldhaber, an exiled Austrian Jew. They married, and in 1939, they emigrated to the United States where they both had exceptional careers.

  61. 61.

    See p. 310.

  62. 62.

    See p. 311.

  63. 63.

    See p. 5.

  64. 64.

    See p. 136 and p. 215.

  65. 65.

    See p. 249.

  66. 66.

    A heavy nucleus, such as lead 208, contains 208 nucleons within a sphere with a radius equal to about 6.6 femtometers (6. 6 ×10 − 13 cm). The volume is thus 1200 cubic femtometers, and the average density of nucleons is about \(\frac{208} {1200} = 0.17\) nucleons per cubic femtometer.

  67. 67.

    See p. 313.

References

  1. Heilbron, J. L. and Seidel, R. W., Lawrence and his laboratory. Vol. 1, University of California Press, Berkeley, 1989.

    Google Scholar 

  2. McMillan, E., “The Synchrotron—A Proposed High Energy Particle Accelerator”, Physical Review 68, 143–144 (L), September 1, 1945.

    Google Scholar 

  3. Veksler, V. I., “A new method for acceleration of relativistic particles”, Comptes Rendus (Doklady) de l’Académie des Sciences de l’URSS 43, 329–331, 1944.

    Google Scholar 

  4. Richardson, J. R., MacKenzie, K. R., Lofaren, E. J. and Wright, B. T., “Frequency Modulated Cyclotron”, Physical Review 69, 669–670 (L), June 1, 1946.

    Google Scholar 

  5. Brobeck, W. M., Lawrence, E. O., MacKenzie, K. R., McMillan, E., Serber, R., Sewell, D. C., Simpson, K. M. and Thornton, R. L., “Initial Performance of the 184-Inch Cyclotron of the University of California”, Physical Review 71, 449–450, April 1947.

    Google Scholar 

  6. Livingston, M. S. and Blewett, J. P., Particle Accelerators, McGraw-Hill, New York, 1962.

    MATH  Google Scholar 

  7. Oliphant, M. L., Gooden, J. S. and Hide, G. S., “The acceleration of charged particles to very high energies”, Proceedings of the Physical Society 59, 666–677, 1947.

    Google Scholar 

  8. Gooden, J., Jensen, H. H. and Symonds, J. L., “Theory of the proton synchrotron”, Proceedings of the Physical Society 59, 677–693, 1947.

    Google Scholar 

  9. Kerst, D. W., “Acceleration of Electrons by Magnetic Induction”, Physical Review 58, 841 (L), November 1940.

    Google Scholar 

  10. Kerst, D. W. and Serber, R., “Electronics Orbits in the Induction Accelerator”, Physical Review 60, 53–58, July 1941.

    Google Scholar 

  11. Kerst, D. W., “A New Induction Accelerator Generating 20 Mev”, Physical Review 61, 93–94 (L), January 1942.

    Google Scholar 

  12. Kerst, D. W., Adams, G. D., Koch, H. W. and Robinson, C. S., “Operation of a 300-Mev Betatron”, Physical Review 78, 297 (L), May 1950.

    Google Scholar 

  13. Livingston, M. S. and Blewett, J. P., Particle Accelerators, p. 397.

    Google Scholar 

  14. Ibid., p. 328.

    Google Scholar 

  15. Chodorow, M., Ginzton, E. L., Hansen, W. W., Kyhl, R. L., Neal, R. B. and Panofsky, W. K., “Stanford High-Energy Linear Electron Accelerator (Mark III)”, Review of Scientific Instruments 26, 134–204, February 1955.

    Google Scholar 

  16. van de Graaff, R., Trump, J. G. and Buechner, W. W., “Electrostatic Generators for the Acceleration of Charged Particles”, Reports on Progress in Physics 11, 1–18, 1948.

    Google Scholar 

  17. Bennett, W. H. and Darby, P. F., “Negative Atomic Hydrogen Ions”, Physical Review 49, 97–99, January 1936.

    Google Scholar 

  18. Greinacher, H., “Über einen hydrolischen Zähler für Elementarschtrahlen”, Helvetica Physica Acta 7, 360–367, 1934.

    Google Scholar 

  19. Greinacher, H., “Über den hydrolischen Zähler für Elementarstrahlen (II. Mitteilung). Messung des elementaren Photoeffekts an Wasser”, Helvetica Physica Acta 7, 514–519, 1934.

    Google Scholar 

  20. Greinacher, H., “Über einen weiteren hydroelektrischen Zähler für Elementarstrahlen und Photo-Elektronen”, Helvetica Physica Acta 8, 89–96, 1935.

    Google Scholar 

  21. Chang, W. Y. and Rosenblum, S., “A Simple Counting System for Alpha-Ray Spectra and the Energy Distribution of Po Alpha-Particles”, Physical Review 67, 222–227, April 1945.

    Google Scholar 

  22. Madansky, L. and Pidd, R. W., “Characteristics of the Parallel-Plate Counter”, Physical Review 73, 1215–1216, May 1948.

    Google Scholar 

  23. Bay, Z., “Electron Multiplier as an Electron Counting Device”, Review of Scientific Instruments 12, 127–133, March 1941.

    Google Scholar 

  24. Zworykin, V. K., Morton, G. A. and Malter, L., “The Secondary Emission Multiplier—A New Electronic Device”, Proceedings of the Institute of Radio Engineers 24, 351–375, March 1936.

    Google Scholar 

  25. Zworykin, V. K. and Rajchman, J. A., “The Electrostatic Electron Multiplier”, IRE Proceedings 27, 558–566, September 1939.

    Google Scholar 

  26. Blau, M. and Dreyfus, B., “The Multiplier Photo-Tube in Radioactive Measurements”, Review of Scientific Instruments 16, 245–248, September 1945.

    Google Scholar 

  27. Curran, S. C. and Baker, W. R., “Photoelectric Alpha-Particle Detector”, Review of Scientific Instruments 19, 116, February 1948.

    Google Scholar 

  28. Mcintyre, J. A. and Hofstadter, R., “Measurement of Gamma-Ray Energies with One Crystal”, Physical Review 78, 617–619, June 1950.

    Google Scholar 

  29. Wilson, A. H., “The Theory of Electronic Semi-Conductors”, Proceedings of the Royal Society, London A133, 458–491, October 1, 1931.

    Google Scholar 

  30. Wilson, A. H., “A Note on the Theory of Rectification”, Proceedings of the Royal Society, London A136, 487–498, June 1, 1932.

    Google Scholar 

  31. Schottky, W., “Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter”, Zeitschrift für Physik 113, 367–414, May 1939.

    Google Scholar 

  32. Schottky, W., “Vereinfachte und erweiterte Theorie der Randschicht-gleichrichter”, Zeitschrift für Physik 118, 539–592, February 1942.

    Google Scholar 

  33. Mott, N. F., “The Theory of Crystal Rectifiers”, Proceedings of the Royal Society, London A171, 27–38, May 1, 1939.

    Google Scholar 

  34. Bardeen, J. and Brattain, W. H., “The Transistor, A Semi-Conductor Triode”, Physical Review 74, 230–231, July 15, 1948.

    Google Scholar 

  35. Riordan, M. and Hoddeson, L., Crystal fire : the invention of the transistor and the birth of the information age, Norton, New York, 1997.

    Google Scholar 

  36. Riordan, M., Hoddeson, L. and Herring, C., “The invention of the transistor”, Reviews of Modern Physics 71, S336–S345, March 1999.

    Google Scholar 

  37. Riordan, M. and Hoddeson, L., “Crystal fire, p. 159”.

    Google Scholar 

  38. McKay, K. G., “The Crystal Conduction Counter”, Physics Today 6, 10–13, May 1953.

    Google Scholar 

  39. Röntgen, W. C. and Joffé, A., “Ueber die Elektrizitätsleitung in einiger Kristallen und über den Einfluss der Bestrahlung darauf”, Annalen der Physik, Leipzig 41, 449–498, 1913.

    Google Scholar 

  40. van Heerden, P. J., “The Crystal Counter. A New Apparatus in Nuclear Physics for the Investigation of β and γ-rays. Part I”, Physica 16, 505–516, June 1950.

    Google Scholar 

  41. Wooldridge, D. E., Ahearn, A. J. and Burton, J. A., “Conductivity Pulses Induced in Diamond by Alpha-Particles”, Physical Review 71, 913 (L), June 15, 1947.

    Google Scholar 

  42. Curtiss, L. F. and Brown, B. W., “Diamond as a Gamma-Ray Counter”, Physical Review 72, 643 (L), October 1, 1947.

    Google Scholar 

  43. Hofstadter, R., Milton, J. C. D. and Ridgway, S. L., “Behavior of Silver Chloride Crystal Counters”, Physical Review 72, 977–978, November 15, 1947.

    Google Scholar 

  44. Chynoweth, A. G., “Conductivity Crystal Counters”, American Journal of Physics 20, 218–226, April 1952.

    Google Scholar 

  45. McKay, K. G., “Electron-Hole Production in Germanium by Alpha-Particles”, Physical Review 84, 829–832, November 1951.

    Google Scholar 

  46. Mayer, J. W. and Gossick, B. R., “The Use of Au-Ge Broad Area Barrier as Alpha-Particle Spectrometer”, Review of Scientific Instruments 27, 407–408 (L), June 1956.

    Google Scholar 

  47. McKenzie, J. M. and Bromley, D. A., “Observation of Charged-Particle Reaction Products”, Physical Review Letters 2, 303–305, April 1959.

    Google Scholar 

  48. Miller, G. L., Gibson, W. M. and Donovan, P., “Semiconductor Particle Detectors”, Annual Review of Nuclear Science 12, 189–220, 1962.

    Google Scholar 

  49. Reinganum, M., “Streuung und photographische Wirkung der α-Strahlen”, Physikalische Zeitschrift 12, 1076–1077, December 1, 1911.

    Google Scholar 

  50. Blau, M., “Über die photographische Wirkung natürlicher H-Strahlen”, Sitzungsberichte der Akademie der Wissenschaften in Wien 134, 427–436, session of July 9, 1925.

    Google Scholar 

  51. Blau, M., “Die photographische Wirkung von H-Strahlen aus Paraffin und Aluminium”, Zeitschrift für Physik 34, 285–295, 1925.

    Google Scholar 

  52. Rumbaugh, L. H. and Locher, G. L., “Neutrons and Other Heavy Particles in Cosmic Radiation of the Stratosphere”, Physical Review 49, 855 (L), June 1, 1936.

    Google Scholar 

  53. Wilkins, T. R. and St. Helens, H., “Direct Photographic Tracks of Atomic Cosmic-Ray Corpuscles”, Physical Review 49, 403 (L), March 1936.

    Google Scholar 

  54. Blau, M. and Wambacher, H., “Vorläufiger Bericht über photographische Ultrastrahluntersuchungen nebst einigen Versuchen über die ‘spontane Neutronemission’. Auftreten von H-Strahlen ähnlichen Bahnen entsprechend mehreren Metern Reichweite in Luft”, Sitzungsberichte der Akademie der Wissenschaften in Wien 146, 469–477, session of July 1, 1937.

    Google Scholar 

  55. Blau, M. and Wambacher, H., “Disintegration Processes by Cosmic Rays with the Simultaneous Emission of Several Heavy Particles”, Nature 140, 585, October 2, 1937.

    Google Scholar 

  56. Møller, C., “On the theory of mesons”, Det Kongelig Danske Videnskabernes Selskab, Matematisk-fysiske Meddleser 18, No. 6, 1941.

    Google Scholar 

  57. Segrè, E., “An Unsuccessful Search for Transuranic Elements”, Physical Review 55, 1104–1105, June 1939.

    Google Scholar 

  58. McMillan, E. and Abelson, P. H., “Radioactive Element 93”, Physical Review 57, 1185–1186, June 1940.

    Google Scholar 

  59. Seaborg, G. T., The Plutonium story. The journals of professor Glenn T. Seaborg, 1939–1946, Battelle Press, Columbus, 1994.

    Google Scholar 

  60. Seaborg, G., McMillan, E. M., Kennedy, J. W. and Wahl, A. C., “Radioactive Element 94 from Deuterons on Uranium”, Physical Review 69, 366–367 (L), April 1, 1946.

    Google Scholar 

  61. Seaborg, G., Wahl, A. C. and Kennedy, J. W., “Radioactive Element 94 from Deuterons on Uranium”, Physical Review 69, 367 (L), April 1946.

    Google Scholar 

  62. Seaborg, G. and Wahl, A. C., “The Chemical Properties of Elements 94 and 93”, Journal of the American Chemical Society 70, 1128–1134, 1948.

    Google Scholar 

  63. von Grosse, A., “The Chemical Properties of Elements 93 and 94”, Journal of the American Chemical Society 57, 440–441, March 1935.

    Google Scholar 

  64. Goeppert Mayer, M., “Rare-Earth and Transuranic Elements”, Physical Review 60, 184–187, August 1941.

    Google Scholar 

  65. Seaborg, G., “The Chemical and Radioactive Properties of the Heavy Elements”, Chemical and Engineering News 23, 2190–93, December 10, 1945.

    Google Scholar 

  66. Seaborg, G., “Place in the Periodic System and Electronic Structure of the Heaviest Elements”, Nucleonics 5, 16–36, November 1949.

    Google Scholar 

  67. Snell, A. H., Pleasonton, F. and McCord, R. V., “Radioactive Decay of the Neutron”, Physical Review 78, 310–311, May 1950.

    Google Scholar 

  68. Robson, J. M., “Radioactive Decay of the Neutron”, Physical Review 78, 311–312 (L), May 1950.

    Google Scholar 

  69. Robson, J. M., “The Radioactive Decay of the Neutron”, Physical Review 83, 349–358, July 15, 1951.

    Google Scholar 

  70. Mott, N. F., “The Scattering of Fast Electrons by Atomic Nuclei”, Proceedings of the Royal Society, London A124, 425–442, June 4, 1929.

    Google Scholar 

  71. Guth, E., “Über die Wechselwirkung zwischen schnellen Elektronen und Atomkernen”, Anzeiger der Akademie der Wissenschaften in Wien 24, 299–306, session of November 22, 1934.

    Google Scholar 

  72. Rose, M. E., “The Charge Distribution in Nuclei and the Scattering of High Energy Electrons”, Physical Review 73, 279–284, February 1948.

    Google Scholar 

  73. Elton, L. R. B., “The Effect of Nuclear Structure on the Elastic Scattering of Fast Electrons”, Proceedings of the Physical Society, London A63, 1115–1124, October 1950.

    Google Scholar 

  74. Lyman, E. M., Hanson, A. O. and Scott, M. B., “Scattering of 15.7-Mev Electrons by Nuclei”, Physical Review 84, 626–634, November 15, 1951.

    Google Scholar 

  75. Pidd, R. W., Hammer, C. L. and Raka, E. C., “High-Energy Electron Scattering by Nuclei”, Physical Review 92, 436–437, October 1953.

    Google Scholar 

  76. Hofstadter, R., Fechter, H. R. and McIntyre, J., “Scattering of High-Energy Electrons and the Method of Nuclear Recoil”, Physical Review 91, 422–423, July 15, 1953.

    Google Scholar 

  77. Hofstadter, R., “Electron Scattering and Nuclear Structure”, Reviews of Modern Physics 28, 214–254, 1956.

    Google Scholar 

  78. Hofstadter, R. and McAllister, R. W., “Electron Scattering from the Proton”, Physical Review 98, 217–218, April 1955.

    Google Scholar 

  79. McAllister, R. W. and Hofstadter, R., “Elastic Scattering of 188-MeV Electrons from the Proton and the Alpha Particle”, Physical Review 102, 851–856, May 1956.

    Google Scholar 

  80. Wigner, E. P., “On the Structure of Nuclei beyond Oxygen”, Physical Review 51, 947–958, June 1937.

    Google Scholar 

  81. Wigner, E. P. and Feenberg, E., “Symmetry properties of nuclear levels”, Reports on Progress in Physics 8, 274–317, 1941.

    Google Scholar 

  82. Goeppert Mayer, M., “On Closed Shells in Nuclei”, Physical Review 74, 235–239, August 1948.

    Google Scholar 

  83. Barkas, W. H., “The Analysis of Nuclear Binding Energies”, Physical Review 55, 691–698, April 1939.

    Google Scholar 

  84. Goeppert Mayer, M., “The Shell Model”, in Nobel Lectures, Physics 1963–1970, Elsevier, Amsterdam, 1972.

    Google Scholar 

  85. Goeppert Mayer, M., “On Closed Shells in Nuclei. II”, Physical Review 75, 1969–1970 (L), June 1949.

    Google Scholar 

  86. Waenke, H. and Arnold, J. R., “Hans Suess 1909–1993”, Biographical Memoirs of the National Academy of Sciences 87, 3–20, 2005.

    Google Scholar 

  87. Jensen, J. H. D., “Glimpses at the History of the Nuclear Structure Theory”, in Nobel Lectures, Physics 1963–1970, Elsevier, Amsterdam, 1972.

    Google Scholar 

  88. Jensen, J. H. D., “The History of the Theory of Structure of the Atomic Nucleus”, Science 147, 1419–1423, March 19, 1965.

    Google Scholar 

  89. Suess, H. E., Haxel, O. and Jensen, J. H. D., “Zur Interpretation der ausgezeichneten Nucleonenzahlen im Bau der Atomkerne”, Naturwissenschaften 36, 153–155, July 1949.

    Google Scholar 

  90. Jensen, J. H. D., Sueß, H. E. and Haxel, O., “Modelmäßige Deutung der ausgezeichneten Nucleonenzahlen im Kernbau”, Naturwissenschaften 36, 155–156, July 1949.

    Google Scholar 

  91. Haxel, O., Jensen, J. H. D. and Suess, H. E., “On the “Magic Numbers” in Nuclear Structure”, Physical Review 75, 1766, June 1, 1949.

    Google Scholar 

  92. Haxel, O., Jensen, J. H. D. and Suess, H. E., “Modellmäßige Deutung der ausgezeichneten Nukleonenzahlen im Kernbau”, Zeitschrift für Physik 128, 295–311, 1950.

    Google Scholar 

  93. Haxel, O., Jensen, J. H. D. and Suess, H. E., “Das Schalenmodel des Atomkerns”, Ergebnisse der Exakten Naturwissenschaften 26, 244–290, 1952.

    Google Scholar 

  94. Bethe, H. A. and Bacher, R. F., “Nuclear Physics. A. Stationary States of Nuclei”, Reviews of Modern Physics 8, 82–229, April 1936.

    Google Scholar 

  95. Fermi, E., Nuclear physics, The University of Chicago Press, Chicago, 1949, p. 168.

    Google Scholar 

  96. Weisskopf, V. F., “Nuclear Models”, Science 113, 101–102, January 26, 1951.

    Google Scholar 

  97. Feenberg, E., “Nuclear Shell Structure and Isomerism”, Physical Review 75, 320–22 (L), January 15, 1949.

    Google Scholar 

  98. Schmidt, T., “Über die magnetischen Momente der Atomkerne”, Zeitschrift für Physik 106, 358–361, 1937.

    Google Scholar 

  99. Feenberg, E. and Hammack, K. C., “Nuclear Shell Structure”, Physical Review 75, 1877–1893, June 15, 1949.

    Google Scholar 

  100. Nordheim, L. W., “On Spins, Moments, and Shells in Nuclei”, Physical Review 75, 1894–1901, June 1949.

    Google Scholar 

  101. Goeppert-Mayer, M. and Jensen, J. H. D., Elementary theory of nuclear shell structure, John Wiley, New York, 1955.

    MATH  Google Scholar 

  102. Cook, L. G., McMillan, E. M., Peterson, J. M. and Sewell, D. C., “Total Cross Sections of Nuclei for 90-Mev Neutrons”, Physical Review 72, 1264–1265, December 1947.

    Google Scholar 

  103. Serber, R., “Nuclear Reactions at High Energies”, Physical Review 72, 1114–1115, December 1947.

    Google Scholar 

  104. Bethe, H. A., “A Continuum Theory of the Compound Nucleus”, Physical Review 57, 1125–1144, June 15, 1940.

    Google Scholar 

  105. Fernbach, S., Serber, R. and Taylor, T. B., “The Scattering of High Energy Neutrons by Nuclei”, Physical Review 75, 1352–1355, May 1949.

    Google Scholar 

  106. Burkig, J. W. and Wright, B. T., “Survey Experiment on Elastic Scattering”, Physical Review 82, 451–452, May 1951.

    Google Scholar 

  107. Richardson, R. E., Ball, W. P., Leith, C. E. and Moyer, B. J., “Elastic Scattering of 340-Mev Protons”, Physical Review 83, 859–860 (L), August 1951.

    Google Scholar 

  108. Gatha, K. M. and Riddell, Jr., R. J., “An Investigation into the Nuclear Scattering of High Energy Protons”, Physical Review 86, 1035–1039, June 1952.

    Google Scholar 

  109. Gugelot, P. C., “Some Data on the Elastic Scattering of 18.3-Mev Protons”, Physical Review 87, 525–526, August 1952.

    Google Scholar 

  110. Le Levier, R. E. and Saxon, D. S., “An Optical Model for Nucleon-Nuclei Scattering”, Physical Review 87, 40–41, July 1952.

    Google Scholar 

  111. Cohen, B. L. and Neidigh, R. V., “Angular Distributions of 22-Mev Protons Elastically Scattered by Various Elements”, Physical Review 93, 282–287, January 15, 1954.

    Google Scholar 

  112. Dayton, I. E., “The Elastic Scattering of 18-Mev Protons by Al, Fe, Ni, and Cu”, Physical Review 95, 754–758, August 1954.

    Google Scholar 

  113. Chase, D. M. and Rohrlich, F., “Elastic Scattering of Protons by Nuclei”, Physical Review 94, 81–86, April 1954.

    Google Scholar 

  114. Woods, R. D. and Saxon, D. D., “Diffuse Surface Optical Model for Nucleon-Nuclei Scattering”, Physical Review 95, 577–578, July 1954.

    Google Scholar 

  115. Williams, M. R., A history of computing technology, Prentice-Hall, Englewood Cliffs, N.J., 1985.

    Google Scholar 

  116. Bohr, N., Peierls, R. and Placzek, G., “Nuclear Reactions in the Continuous Energy Region”, Nature 144, 200–201, July 29, 1939.

    Google Scholar 

  117. Helmholz, A. C., McMillan, E. M. and Sewell, D. C., “Angular Distribution of Neutrons from Targets Bombarded by 190-Mev Deuterons”, Physical Review 72, 1003–1007, December 1947.

    Google Scholar 

  118. Serber, R., “The Production of High Energy Neutrons by Stripping”, Physical Review 72, 1008–1016, December 1947.

    Google Scholar 

  119. Peaslee, D. C., “Deuteron-Induced Reactions”, Physical Review 74, 1001–1013, November 1948.

    Google Scholar 

  120. Burrows, H. B., Gibson, W. M. and Rotblat, J., “Angular Distributions of Protons from the Reaction O16(d, p)O17”, Physical Review 80, 1095, December 15, 1950.

    Google Scholar 

  121. Butler, S. T., “On Angular Distributions from (d, p) and (d, n) Nuclear Reactions”, Physical Review 80, 1095–1096 (L), December 15, 1950.

    Google Scholar 

  122. Holt, J. R. and Young, C. T., “The Angular Distribution of Protons from the Reaction 27Al(d,p)28Al”, Proceedings of the Physical Society 63, 833–838, August 1950.

    Google Scholar 

  123. Butler, S. T., “Angular distributions from (d,p) and (d,n) nuclear reactions”, Proceedings of the Royal Society, London A208, 559–579, September 24, 1951.

    Google Scholar 

  124. Rotblat, J., “The Spins and Parities of the 3.7-3.9-Mev Doublet in C13”, Physical Review 83, 1271–1272, September 1951.

    Google Scholar 

  125. Daitch, P. B. and French, J. B., “The Born Approximation Theory of (d, p) and (d, n) Reactions”, Physical Review 87, 900–901 (L), September 1952.

    Google Scholar 

  126. Horowitz, J. and Messiah, A. M. L., “The Mechanism of Stripping Reactions”, Physical Review 92, 1326–1327, December 1, 1953.

    Google Scholar 

  127. Horowitz, J. and Messiah, A. M. L., “Sur les réactions (d, p) et (d, n)”, Journal de Physique et Le Radium 14, 695–706, December 1953.

    Google Scholar 

  128. Francis, N. C. and Watson, K. M., “The Theory of the Deuteron Stripping Reactions”, Physical Review 93, 313–317, January 15 1954.

    Google Scholar 

  129. Tobocman, W., “Theory of the (d, p) Reaction”, Physical Review 94, 1655–1663, June 1954.

    Google Scholar 

  130. Tobocman, W. and Kalos, M. H., “Numerical Calculation of (d, p) Angular Distributions”, Physical Review 97, 132–136, January 1, 1955.

    Google Scholar 

  131. Thomas, R. G., “Collision Matrices for the Compound Nucleus”, Physical Review 97, 224–237, January 1955.

    Google Scholar 

  132. Mott, N. F. and Massey, H. S. W., The Theory of atomic collisions, Clarendon Press, Oxford, 1933. p. 100.

    MATH  Google Scholar 

  133. Bethe, H. A., “Nuclear Physics. B. Nuclear Dynamics, Theoretical”, Reviews of Modern Physics 9, 69–244, April 1937.

    Google Scholar 

  134. Bothe, W. and Horn, W., “Die Sekundärstrahlung harter γ-Strahlen”, Zeitschrift für Physik 88, 683–698, 1934.

    Google Scholar 

  135. Bothe, W. and Gentner, W., “Die Streu- und Sekundärstrahlung harter γ-Strahlen”, Naturwissenschaften 24, 171—172, March 13, 1936.

    Google Scholar 

  136. Baldwin, G. C. and Koch, H. W., “Threshold Measurements on the Nuclear Photo-Effect”, Physical Review 67, 1–11, January 1945.

    Google Scholar 

  137. Baldwin, G. C. and Klaiber, G. S., “Photo-Fission in Heavy Elements”, Physical Review 71, 3–10, January 1, 1947.

    Google Scholar 

  138. McElhinney, J., Hanson, A. O., Becker, R. A., Duffield, R. B. and Diven, B. C., “Thresholds for Several Photo-Nuclear Reactions”, Physical Review 75, 542–554, February 1949.

    Google Scholar 

  139. Goldhaber, M. and Teller, E., “On Nuclear Dipole Vibrations”, Physical Review 74, 1046–1049, November 1, 1948.

    Google Scholar 

  140. Gordy, W., “Relation of Nuclear Quadrupole Moment to Nuclear Shell Structure”, Physical Review 76, 139–140 (L), July 1949.

    Google Scholar 

  141. Townes, C. H., Foley, H. M. and Low, W., “Nuclear Quadrupole Moments and Nuclear Shell Structure”, Physical Review 76, 1415–1416 (L), November 1949.

    Google Scholar 

  142. Rainwater, J., “Nuclear Energy Level Argument for a Spheroidal Nuclear Model”, Physical Review 79, 432–434 (L), August 1950.

    Google Scholar 

  143. Bohr, A., “On the Quantization of Angular Momenta in Heavy Nuclei”, Physical Review 81, 134–138, January 1951.

    Google Scholar 

  144. Bohr, A., “The Coupling of Nuclear Surface Oscillations to the Motion of Individual Nucleons.”, Det Kongelig Danske Videnskabernes Selskab, Matematisk-fysiske Meddleser 26, No. 14, 1–40, 1952.

    Google Scholar 

  145. Bohr, A. and Mottelson, B. R., “Beta-Decay and the Shell Model, and the Influence of Collective Motion on Nuclear Transitions”, Physica 18, 1066–1078, December 1952.

    Google Scholar 

  146. Goldhaber, M. and Sunyar, A. W., “Classification of Nuclear Isomers”, Physical Review 83, 906–918, September 1, 1951.

    Google Scholar 

  147. Scharff-Goldhaber, G., “Excited States of Even-Even Nuclei”, Physica 18, 1105–1109, December 1952.

    Google Scholar 

  148. Asaro, F. and Perlman, I., “First Excited States of Even-Even Nuclides in the Heavy Element Region”, Physical Review 87, 393–394, July 1952.

    Google Scholar 

  149. Curie, I., “Étude du rayonnement γ de l’ionium”, Journal de Physique et Le Radium 10, 381–386, December 1949.

    Google Scholar 

  150. Rasetti, F. and Booth, E. C., “Gamma-Ray Spectrum of Ionium (Th230)”, Physical Review 91, 315–318, July 1953.

    Google Scholar 

  151. Goldhaber, M. and Hill, R. D., “Nuclear Isomerism and Shell Structure”, Reviews of Modern Physics 24, 179–239, July 1952.

    Google Scholar 

  152. Scharff-Goldhaber, G., “Excited States of Even-Even Nuclei”, Physical Review 90, 587–602, May 1953.

    Google Scholar 

  153. Bohr, A. and Mottelson, B. R., “Interpretation of Isomeric Transitions of Electric Quadrupole Type”, Physical Review 89, 316–317 (L), January 1953.

    Google Scholar 

  154. Bohr, A. and Mottelson, B. R., “Rotational States in Even-Even Nuclei”, Physical Review 90, 717–719, May 1953.

    Google Scholar 

  155. Bohr, A. and Mottelson, B. R., “Collective and Invidual Aspects of Nuclear Structure”, Det Kongelig Danske Videnskabernes Selskab, Matematisk-fysiske Meddleser 27, No. 16, 1–175, 1953.

    Google Scholar 

  156. Nilsson, S. G., “Binding States of Individual Nucleons in Strongly Deformed Nuclei”, Det Kongelig Danske Videnskabernes Selskab, Matematisk-fysiske Meddleser 29, No. 16, 1–68, 1955.

    MathSciNet  Google Scholar 

  157. Weisskopf, V. F., “Excitation of Nuclei by Bombardment with Charged Particles”, Physical Review 53, 1018 (L), June 1938.

    Google Scholar 

  158. Ter-Martirosyan, K. A., “Excitation of Nuclei by the Coulomb field of Charged Particles”, Zhurnal Eksperimental’ noi i Teoreticheskoi Fiziki (Journal of Experimental and Theoretical Physics) 22, 284–296, 1952. English translation in Kurt Alder and Aage Winther, eds., Coulomb excitation, a collection of reprints, pp. 15–19.

    Google Scholar 

  159. Alder, K. and Winther, A., “The Theory of Coulomb Excitation of Nuclei”, Physical Review 91, 1578–1579 (L), September 1953.

    Google Scholar 

  160. Huus, T. and Zupanči č, Č., “Excitation of Nuclear Rotational States by the Electric Field of Impinging Particles”, Det Kongelig Danske Videnskabernes Selskab, Matematisk-fysiske Meddleser 28, No. 1, 1–19, 1953.

    Google Scholar 

  161. Alder, K., Bohr, A., Huus, T., Mottelson, B. R. and Winther, A., “Study of Nuclear Structure by Electromagnetic Excitation with Accelerated Ions”, Reviews of Modern Physics 28, 432–542, October 1956.

    Google Scholar 

  162. Seaborg, G. T., “Table of Isotopes”, Reviews of Modern Physics 16, 1–32, 1944.

    Google Scholar 

  163. Seaborg, G. T. and Perlman, I., “Table of Isotopes”, Reviews of Modern Physics 20, 585–667, 1948.

    Google Scholar 

  164. Hollander, J. M., Perlman, I. and Seaborg, G. T., “Table of Isotopes”, Reviews of Modern Physics 25, 469–651, 1953.

    Google Scholar 

  165. Strominger, D., Hollander, J. M. and Seaborg, G. T., “Table of Isotopes”, Reviews of Modern Physics 30, 585–904, 1958.

    Google Scholar 

  166. Hoisington, L. E., Share, S. S. and Breit, G., “Effects of Shape of Potential Energy Wells Detectable by Experiments on Proton-Proton Scattering”, Physical Review 56, 884–890, November 1939.

    Google Scholar 

  167. Yukawa, H. and Sakata, S., “Mass and Mean Life-Time of the Meson”, Nature 143, 761–762, May 6, 1939.

    Google Scholar 

  168. Nordheim, L. W., “Lifetime of the Yukawa Particle”, Physical Review 55, 506 (L), March 1939.

    Google Scholar 

  169. Bethe, H. A. and Nordheim, L. W., “On the Theory of Meson Decay”, Physical Review 57, 998–1006, June 1940.

    Google Scholar 

  170. Tomonaga, S.-I. and Araki, G., “Effect of the Nuclear Coulomb Field on the Capture of Slow Mesons”, Physical Review 58, 90–91, July 1940.

    Google Scholar 

  171. Conversi, M., Pancini, E. and Piccioni, O., “On the Disintegration of Negative Mesons”, Physical Review 71, 209–210 (L), February 1947.

    Google Scholar 

  172. Sakata, S. and Inoue, T., “On the Correlations between Mesons and Yukawa Particles”, Progress of Theoretical Physics. 1, 143–149, November-December 1946.

    Google Scholar 

  173. Tanikawa, Y., “On the Cosmic-Ray Meson and the Nuclear Meson”, Progress of Theoretical Physics 2, 220–221, November–December 1947.

    Google Scholar 

  174. Marshak, R. E. and Bethe, H. A., “On the Two-Meson Hypothesis”, Physical Review 72, 506–509, September 1947.

    Google Scholar 

  175. Lattes, C. M. G., Muirhead, H., Occhialini, G. P. S. and Powell, C. F., “Processes Involving Charged Mesons”, Nature 159, 694–697, May 24, 1947.

    Google Scholar 

  176. Lattes, C. M. G., Occhialini, G. P. S. and Powell, C. F., “Observation of the Tracks of Slow Mesons in Photographic Emulsions”, Nature 160, I : pp. 453–456, October 4; II : pp. 486–492, October 11, 1947.

    Google Scholar 

  177. Gardner, E. and Lattes, C. M. G., “Production of Mesons by the 184-Inch Berkeley Cyclotron”, Science 107, 270–271, March 12, 1948.

    Google Scholar 

  178. Richardson, J. R., “The Lifetime of the Heavy Meson”, Physical Review 74, 1720–1721, December 1948.

    Google Scholar 

  179. Steinberger, J., Panofsky, W. K. and Steller, J., “Evidence for the Production of Neutral Mesons by Photons”, Physical Review 78, 802–805, June 15, 1950.

    Google Scholar 

  180. Kemmer, N., “The Charge-Dependence of Nuclear Forces”, Proceedings of the Cambridge Philosophical Society 34, 354–364, session of May 16, 1938.

    Google Scholar 

  181. Kemmer, N., “Quantum theory of Einstein-Bose particles and nuclear interactions”, Proceedings of the Royal Society, London A166, 127–153, 1938.

    Google Scholar 

  182. Frölich, H., Heitler, W. and Kemmer, N., “On the nuclear forces and the magnetic moment of the neutron and the proton”, Proceedings of the Royal Society, London A166, 154–177, 1938.

    Google Scholar 

  183. Panofsky, W. K., Aamodt, R. L. and Hadley, J., “The Gamma-Ray Spectrum Resulting from Capture of Negative π-Mesons in Hydrogen and Deuterium”, Physical Review 81, 565–574, February 1951.

    Google Scholar 

  184. Peierls, R., “The Development of our Ideas on the Nuclear Forces”, in Nuclear Physics in retrospect, edited by Stuewer, R. H., pp. 183–211, University of Minnesota Press, 1979.

    Google Scholar 

  185. Chamberlain, O. and Wiegand, C., “Proton-Proton Scattering at 340 Mev”, Physical Review 79, 81–85, July 1950.

    Google Scholar 

  186. Jastrow, R., “On the Nucleon-Nucleon Interaction”, Physical Review 81, 165–170, January 1951.

    Google Scholar 

  187. Blatt, J. M. and Weisskopf, V. F., Theoretical Nuclear Physics, John Wiley & Sons, New York, 1952, p. 777.

    MATH  Google Scholar 

  188. Johnson, M. H. and Teller, E., “Classical Field Theory of Nuclear Forces”, Physical Review 98, 783–787, May 1955.

    Google Scholar 

  189. Brueckner, K. A., Eden, R. J. and Francis, N. C., “High-Energy Reactions and the Evidence for Correlations in the Nuclear Ground-State Wave Function”, Physical Review 98, 1445–1455, June 1955.

    Google Scholar 

  190. Brueckner, K. A., Levinson, C. A. and Mahmoud, H. M., “Two-Body Forces and Nuclear Saturation. I. Central Forces”, Physical Review 95, 217–228, July 1954.

    Google Scholar 

  191. Brueckner, K. A., Eden, R. J. and Francis, N. C., “Nuclear Energy Level Fine Structure and Configuration Mixing”, Physical Review 99, 76–87, July 1955.

    Google Scholar 

  192. Brueckner, K. A., Eden, R. J. and Francis, N. C., “Theory of Neutron Reactions with Nuclei at Low Energy”, Physical Review 100, 891–900, November 1955.

    Google Scholar 

  193. Bethe, H. A., “Nuclear Many-Body Problem”, Physical Review 103, 1353–1390, September 1956.

    Google Scholar 

  194. Goldstone, J., “Derivation of the Brueckner many-body theory”, Proceedings of the Royal Society, London A239, 267–279, February 26, 1957.

    Google Scholar 

  195. Feynman, R. P., “The Theory of Positrons”, Physical Review 76, 749–759, September 15, 1949.

    Google Scholar 

  196. Amsterdam Nuclear Reactions Conference, Physica 22, 941–1123, 1956.

    Google Scholar 

  197. Lipkin, H. J. (editor), Proceedings of the Rehovoth Conference on Nuclear Structure held at the Weizmann Institute of Science, Rehovoth, september 8–14, 1957, North Holland, Amsterdam, 1958.

    Google Scholar 

  198. Gugenberger, P. (editor), Comptes rendus du congrès international de physique nucléaire, Interactions nucléaires aux basses énergies et structure des noyaux, Paris, 2–7 juillet 1958, Dunod, Paris, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fernandez, B. (2013). The Time of Maturity. In: Unravelling the Mystery of the Atomic Nucleus. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4181-6_7

Download citation

Publish with us

Policies and ethics