Skip to main content

Brainstem Control of Deglutition: Swallowing Pattern Generator

  • Chapter
  • First Online:
Principles of Deglutition

Abstract

Deglutition, one of the most elaborate motor functions in mammals, depends on a CPG located in the medulla oblongata, which involves several brainstem motor nuclei and two main groups of interneurons. The DSG, located in a primary sensory nucleus, namely the NTS, contains the generator neurons involved in triggering, shaping and timing the sequential or rhythmic swallowing pattern. The VSG, located in the ventrolateral medulla, contains switching neurons that distribute the swallowing drive to the various pools of motoneurons. Both peripheral sensory inputs and supramedullary influences, such as the cortical ones, may shape the CPG activity in order to adapt the output of the network to the motor pattern required. Interestingly, signalling pathways involved in the control of food intake do also exert modulatory influences on the CPG. As regard the mechanisms at work in the CPG, they depend, very probably, on the pattern of intrinsic connections, with a crucial role of the inhibitory ones in shaping the sequential firing, as well as on the intrinsic cellular properties of swallowing neurons. Recent data indicate that the CPG may show some degree of flexibility, with neurons participating to the activity of other brainstem CPGs, providing interesting neuroplasticity capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doty RW. Neural organization of deglutition. In: Code CF, editor. Handbook of physiology alimentary canal, vol. IV. Washington, DC: American Physiological Society; 1968. p. 1861–902.

    Google Scholar 

  2. Goyal RJ, Cobb BW. Motility of the pharynx, esophagus and esophageal sphincters. In: Johnson LR, editor. Physiology of the gastrointestinal tract. New York: Raven; 1981. p. 359–91.

    Google Scholar 

  3. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81:929–69.

    CAS  PubMed  Google Scholar 

  4. Jean A, Dallaporta M. Electrophysiological characterization of the swallowing pattern generator: Role of brainstem. In: Goyal R, Shaker R, editors. GI Motility Online. 2006, doi:10.1038/gimo74.

    Google Scholar 

  5. Miller AJ. Deglutition. Physiol Rev. 1982;62:129–84.

    CAS  PubMed  Google Scholar 

  6. Doty RW. Influence of stimulus pattern on reflex deglutition. Am J Physiol. 1951;166:142–58.

    CAS  PubMed  Google Scholar 

  7. Jean A. Localisation et activité des neurones déglutiteurs bulbaires. J Physiol Paris. 1972;64:227–68.

    CAS  PubMed  Google Scholar 

  8. Miller AJ. Characteristics of the swallowing reflex induced by peripheral nerve and brain stem stimulation. Exp Neurol. 1972;34:210–22.

    Article  CAS  PubMed  Google Scholar 

  9. Roman C, Gonella J. Extrinsic control of digestive tract motility. In: Johnson LR, editor. Physiology of the gastrointestinal tract. 2nd ed. New York: Raven; 1987. p. 507–53.

    Google Scholar 

  10. Lang IM. Upper esophageal sphincter. In: Goyal R and Shaker R, editors. GI motility Online. 2006, 10.1038/gimo12.

  11. Diamant NE. Physiology of esophageal motor function. In: Ongang A, editor. Gastroenterology clinics of North America, Motility disorders, vol. 18. Philadelphia: WB Saunders; 1989. p. 179–94.

    Google Scholar 

  12. Meltzer SJ. On the causes of the orderly progress of the peristaltic movements in the oesophagus. Am J Physiol. 1899;2:266–72.

    Google Scholar 

  13. Jean A. Brainstem control of swallowing: localization and organization of the central pattern generator for swallowing. In: Taylor A, editor. Neurophysiology of the jaws and teeth. London: Macmillan; 1990. p. 294–321.

    Google Scholar 

  14. Amri M, Car A, Jean A. Medullary control of the pontine swallowing neurones in sheep. Exp Brain Res. 1984;55:105–10.

    Article  CAS  PubMed  Google Scholar 

  15. Amri M, Car A. Projections from the medullary swallowing center to the hypoglossal motor nucleus: a neuroanatomical and electrophysiological study in sheep. Brain Res. 1988;441:119–26.

    Article  CAS  PubMed  Google Scholar 

  16. Jean A. Localisation et activité des motoneurones oesophagiens chez le mouton Etude par microélectrodes. J Physiol Paris. 1978;74:737–42.

    CAS  PubMed  Google Scholar 

  17. Jean A, Car A. Inputs to the swallowing medullary neurons from the peripheral afferent fibers and the swallowing cortical area. Brain Res. 1979;178:567–72.

    Article  CAS  PubMed  Google Scholar 

  18. Kessler JP, Jean A. Identification of the medullary swallowing regions in the rat. Exp Brain Res. 1985;57:256–63.

    Article  CAS  PubMed  Google Scholar 

  19. Bao X, Wiedner EB, Altschuler SM. Transsynaptic localization of pharyngeal premotor neurons in rat. Brain Res. 1995;696:246–9.

    Article  CAS  PubMed  Google Scholar 

  20. Barrett RT, Bao X, Miselis RR, Altschuler SM. Brainstem localization of rodent esophageal premotor neurons revealed by transneuronal passage of pseudorabies virus. Gastroenterology. 1994;107:728–37.

    Article  CAS  PubMed  Google Scholar 

  21. Hashim MA, Bieger D. Excitatory amino acid receptor-mediated activation of solitarial deglutitive loci. Neuropharmacology. 1989;28:913–21.

    Article  CAS  PubMed  Google Scholar 

  22. Jean A. Effet de lésions localisées du bulbe rachidien sur le stade oesophagien de la déglutition. J Physiol Paris. 1972;64:507–16.

    CAS  PubMed  Google Scholar 

  23. Kessler JP, Cherkaoui N, Catalin D, Jean A. Swallowing responses induced by microinjections of glutamate and glutamate agonists into the nucleus tractus solitarius of ketamine-anaesthetized rats. Exp Brain Res. 1990;83:151–8.

    Article  CAS  PubMed  Google Scholar 

  24. Lang IM, Dean C, Medda BK, Aslam M, Shaker R. Differential activation of medullary vagal nuclei during different phases of swallowing in the cat. Brain Res. 2004;1014:145–63.

    Article  CAS  PubMed  Google Scholar 

  25. Sang Q, Goyal RK. Swallowing reflex and brain stem neurons activated by superior laryngeal nerve stimulation in the mouse. Am J Physiol Gastrointest Liver Physiol. 2001;280:G191–200.

    CAS  PubMed  Google Scholar 

  26. Lang IM. Brainstem control of the phases of swallowing. Dysphagia. 2009;24:333–48.

    Article  PubMed  Google Scholar 

  27. Collman PI, Tremblay L, Diamant NE. The central vagal efferent supply to the esophagus and lower esophageal sphincter of the cat. Gastroenterology. 1993;104:1430–8.

    CAS  PubMed  Google Scholar 

  28. Rossiter CD, Norman WP, Jain M, Hornby PJ, Benjamin S, Gillis RA. Control of lower esophageal sphincter pressure by two sites in dorsal motor nucleus of the vagus. Am J Physiol Gastrointest Liver Physiol. 1990;259:G899–906.

    CAS  Google Scholar 

  29. Zoungrana OR, Amri M, Car A, Roman C. Intracellular activity of motoneurons of the rostral nucleus ambiguous during swallowing in sheep. J Neurophysiol. 1997;77:909–22.

    CAS  PubMed  Google Scholar 

  30. Gidda JS, Goyal RK. Swallow-evoked action potentials in vagal preganglionic efferents. J Neurophysiol. 1984;52:1169–80.

    CAS  PubMed  Google Scholar 

  31. Miolan JP, Roman C. Activité des fibres vagales efférentes destinées à la musculature lisse du cardia du chien. J Physiol Paris. 1978;74:709–23.

    CAS  PubMed  Google Scholar 

  32. Roman C, Tieffenbach L. Enregistrement de l’activité unitaire des fibres motrices vagales destinées à l’oesophage du Babouin. J Physiol Paris. 1972;64:479–506.

    CAS  PubMed  Google Scholar 

  33. Car A, Amri M. Activity of neurons located in the region of the hypoglossal motor nucleus during swallowing in sheep. Exp Brain Res. 1987;69:175–82.

    Article  CAS  PubMed  Google Scholar 

  34. Ootani S, Umezaki T, Shin T, Murata Y. Convergence of afferents from the SLN and GPN in cat medullary swal­lowing neurons. Brain Res Bull. 1995;37:397–404.

    Article  CAS  PubMed  Google Scholar 

  35. Sumi T. Neuronal mechanisms in swallowing. Pflugers Arch. 1964;278:467–77.

    Article  CAS  Google Scholar 

  36. Saito Y, Ezure K, Tanaka I. Swallowing-related activities of respiratory and non-respiratory neurons in the nucleus of solitary tract in the rat. J Physiol London. 2002;540:1047–60.

    Article  CAS  PubMed  Google Scholar 

  37. Ciampini G, Jean A. Rôle des afférences glossopharyngiennes et trigéminales dans le déclenchement et le déroulement de la déglutition I Afférences glossopharyngiennes. J Physiol Paris. 1980;76:49–60.

    CAS  PubMed  Google Scholar 

  38. Altschuler SM, Bao X, Bieger D, Hopkins DA, Miselis RR. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol. 1989;283:248–68.

    Article  CAS  PubMed  Google Scholar 

  39. Mrini A, Jean A. Synaptic organization of the interstitial subdivision of the nucleus tractus solitarii and of its laryngeal afferents in the rat. J Comp Neurol. 1995;355:221–36.

    Article  CAS  PubMed  Google Scholar 

  40. Chiao GZ, Larson CR, Yajima Y, Ko P, Kahrilas PJ. Neuronal activity in nucleus ambiguus during deglutition and vocalization in conscious monkeys. Exp Brain Res. 1994;100:29–38.

    Article  CAS  PubMed  Google Scholar 

  41. Oku Y, Tanaka I, Ezure K. Activity of bulbar respiratory neurons during fictive coughing and swallowing in the decerebrate cat. J Physiol London. 1994;480:309–24.

    CAS  PubMed  Google Scholar 

  42. Saito Y, Ezure K, Tanaka I. Activity of neurons in ventrolateral respiratory groups during swallowing in decerebrate rats. Brain Dev. 2003;25:338–45.

    Article  PubMed  Google Scholar 

  43. Amri M, Car A, Roman C. Axonal branching of medullary swallowing neurons projecting on the trigeminal and hypoglossal motor nuclei: demonstration by electrophysiological and fluorescent double labeling techniques. Exp Brain Res. 1990;81:384–90.

    Article  CAS  PubMed  Google Scholar 

  44. Jean A, Amri M, Calas A. Connections between the ventral medullary swallowing area and the trigeminal motor nucleus of the sheep studied by tracing techniques. J Autonom Nerv Syst. 1983;7:87–96.

    Article  CAS  Google Scholar 

  45. Ezure K, Oku Y, Tanaka I. Location and axonal projection of one type of swallowing interneurons in cat medulla. Brain Res. 1993;632:216–24.

    Article  CAS  PubMed  Google Scholar 

  46. Cunningham Jr ET, Sawchenko PE. Dorsal medullary pathways subserving oromotor reflexes in the rat: implications for the central neural control of swallowing. J Comp Neurol. 2000;417:448–66.

    Article  PubMed  Google Scholar 

  47. Kessler JP. Involvement of excitatory amino acids in the activity of swallowing-related neurons of the ventro-lateral medulla. Brain Res. 1993;603:353–7.

    Article  CAS  PubMed  Google Scholar 

  48. Kessler JP, Jean A. Evidence that activation of N-methyl-D-aspartate (NMDA) and non-NMDA receptors within the nucleus tractus solitarii triggers swallowing. Eur J Pharmacol. 1991;201:59–67.

    Article  CAS  PubMed  Google Scholar 

  49. Beyak MJ, Xue S, Collman PI, Valdez DT, Diamant NE. Central nervous system nitric oxide induces oropharyngeal swallowing and esophageal peristalsis in the cat. Gastroenterology. 2000;119:377–85.

    Article  CAS  PubMed  Google Scholar 

  50. Broussard DL, Lynn RB, Wiedner EB, Altschuler SM. Solitarial premotor neuron projections to the rat esophagus and pharynx: implications for control of swallowing. Gastroenterology. 1998;114:1268–75.

    Article  CAS  PubMed  Google Scholar 

  51. Rogers RC, Hermann GE, Travagli RA. Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat. J Physiol London. 1999;514:369–83.

    Article  CAS  PubMed  Google Scholar 

  52. Broussard DL, Bao X, Altschuler SM. Somatostatin immunoreactivity in esophageal premotor neurons of the rat. Neurosci Lett. 1998;250:201–4.

    Article  CAS  PubMed  Google Scholar 

  53. Cunningham Jr ET, Sawchenko PE. A circumscribed projection from the nucleus of the solitary tract to the nucleus ambiguus in the rat: anatomical evidence for somatostatin-28-immunoreactive interneurons subserving reflex control of oesophageal motility. J Neurosci. 1989;9:1668–82.

    PubMed  Google Scholar 

  54. Beyak MJ, Collman PI, Xue S, Valdez DT, Diamant NE. Release of nitric oxide in the central nervous system mediates tonic and phasic contraction of the cat lower oesophageal sphincter. Neurogastroenterol Motil. 2003;15:401–7.

    Article  CAS  PubMed  Google Scholar 

  55. Gai W-P, Messenger JP, Yu YH, Gieroba ZJ, Blessing WW. Nitric oxide-synthesising neurons in the central subnucleus of the nucleus tractus solitarius provide a major innervation of the rostral nucleus ambiguus in the rabbit. J Comp Neurol. 1995;357:348–61.

    Article  CAS  PubMed  Google Scholar 

  56. Rogers RC, Travagli RA, Hermann GE. Noradrenergic neurons in the rat solitary nucleus participate in the esophageal-gastric relaxation reflex. Am J Physiol Regul Integr Comp Physiol. 2003;285:R479–89.

    CAS  PubMed  Google Scholar 

  57. Wiedner EB, Bao X, Altschuler SM. Localization of nitric oxide synthase in the brain stem neural circuit controlling esophageal peristalsis in rats. Gastroenterology. 1995;108:367–75.

    Article  CAS  PubMed  Google Scholar 

  58. Bieger D. Muscarinic activation of rhombencephalic neurones controlling oesophageal peristalsis in the rat. Neuropharmacology. 1984;23:1451–64.

    Article  CAS  PubMed  Google Scholar 

  59. Car A, Roman C, Zoungrana OR. Effects of atropine on the central mechanism of deglutition in anesthetized sheep. Exp Brain Res. 2002;142:496–503.

    Article  CAS  PubMed  Google Scholar 

  60. Wang YT, Bieger D. Role of solitarial GABAergic mechanism in control of swallowing. Am J Physiol Regul Integr Comp Physiol. 1991;30:R639–46.

    Google Scholar 

  61. Tsujimura T, Kondo M, Kitagawa J, Tsuboi Y, Saito K, Tohara H, Ueda K, Sessle BJ, Iwata K. Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats. J Physiol. 2009;587:805–17.

    Article  CAS  PubMed  Google Scholar 

  62. Grillner S, Wallen P, Dale N, Brodin L, Buchanan J, Hill R. Transmitters, membrane properties and network circuitry in the control of locomotion in lamprey. Trends Neurosci. 1987;10:34–42.

    Article  CAS  Google Scholar 

  63. Jean A, Kessler JP, Tell F. Nucleus tractus solitarii and deglutition: monoamines, excitatory amino acids and cellular properties. In: Baracco RA, Baracco RA, editors. Nucleus of the solitary tract. Boca Raton: CRC Press; 1994. p. 361–75.

    Google Scholar 

  64. Jean A. Control of the central swallowing program by inputs from the peripheral receptors. A review. J Autonom Nerv Syst. 1984;10:225–33.

    Article  CAS  Google Scholar 

  65. Andrew BL. The nervous control of the cervical oesophagus of the rat during swallowing. J Physiol London. 1956;134:729–40.

    CAS  PubMed  Google Scholar 

  66. Dong H, Loomis CW, Bieger D. Vagal afferent input determines the volume dependence of rat esophageal motility patterns. Am J Physiol Gastrointest Liver Physiol. 2001;281:G44–53.

    CAS  PubMed  Google Scholar 

  67. Falempin M, Rousseau JP. Activity of lingual, laryngeal and oesophageal receptors in conscious sheep. J Physiol London. 1984;347:47–58.

    CAS  PubMed  Google Scholar 

  68. Dong H, Loomis CW, Bieger D. Distal and deglutitive inhibition in the rat esophagus: role of inhibitory neurotransmission in the nucleus tractus solitarii. Gastroenterology. 2000;118:328–36.

    Article  CAS  PubMed  Google Scholar 

  69. Lang IM, Medda BK, Shaker R. Differential activation of pontomedullary nuclei by acid perfusion of different regions of the esophagus. Brain Res. 2010;1352:94–107.

    Article  CAS  PubMed  Google Scholar 

  70. Lang IM, Medda BK, Shaker R. Differential activation of medullary vagal nuclei caused by stimulation of different esophageal mechanoreceptors. Brain Res. 1368:119–33.

    Google Scholar 

  71. Getting PA. Emerging principles governing the operation of neural networks. Annu Rev Neurosci. 1989;12:185–204.

    Article  CAS  PubMed  Google Scholar 

  72. Bariohay B, Tardivel C, Pio J, Jean A, Félix B. BDNF-TrkB signaling interacts with the GABAergic system to inhibit rhythmic swallowing in the rat. Am J Physiol Regul Integr Comp. 2008;295:R1050–9.

    Article  CAS  Google Scholar 

  73. Harada H, Takakusaki K, Kita S, Matsuda M, Nonaka S, Sakamoto T. Effects of injecting GABAergic agents into the medullary reticular formation upon swallowing induced by the superior laryngeal nerve stimulation in decerebrate cats. Neurosci Res. 2005;51:395–404.

    Article  CAS  PubMed  Google Scholar 

  74. Sifrim D, Janssens J, Vantrappen G. A wave of inhibition precedes primary peristaltic contractions in the human esophagus. Gastroenterology. 1992;103:876–82.

    CAS  PubMed  Google Scholar 

  75. Tell F, Jean A. Activation of N-methyl-D-aspartate receptors induces endogenous rhythmic bursting activities in nucleus tractus solitarii neurons: an intracellular study on adult rat brainstem slices. Eur J Neurosci. 1991;3:1353–65.

    Article  PubMed  Google Scholar 

  76. Tell F, Jean A. Ionic basis for endogenous rhythmic patterns induced by activation of N-methyl-D-aspartate receptors in neurons of the rat nucleus tractus solitarii. J Neurophysiol. 1993;70:2379–90.

    CAS  PubMed  Google Scholar 

  77. Tell F, Fagni F, Jean A. Neurons of the nucleus tractus solitarius, in vitro, generate busting activities by solitary tract stimulation. Exp Brain Res. 1990;79:436–40.

    Article  CAS  PubMed  Google Scholar 

  78. Paton JF, Li YW, Kasparov S. Reflex response and convergence of pharyngoesophageal and peripheral chemoreceptors in the nucleus of the solitary tract. Neuroscience. 1999;93:143–54.

    Article  CAS  PubMed  Google Scholar 

  79. Roman C. Contrôle nerveux du péristaltisme oesophagien. J Physiol Paris. 1966;58:79–108.

    CAS  PubMed  Google Scholar 

  80. Janssens J, Valembois P, Hellemans J, Vantrappen G, Pelemans W. Studies on the necessity of a bolus for the progression of secondary peristalsis in the canine oesophagus. Gastroenterology. 1974;67:245–51.

    CAS  PubMed  Google Scholar 

  81. Katz PS, Frost WN. Intrinsic neuromodulation: altering neuronal circuits from within. Trends Neurosci. 1996;19:54–61.

    Article  CAS  PubMed  Google Scholar 

  82. Dickinson PS, Moulins M. Interactions and combinations between different networks in the stomatogastric nervous system. In: HarrisWarrick RM, Marder E, Selverston AI, Moulins M, editors. Dynamic biological networks, The stomatogastric nervous system. Cambridge: MIT Press; 1992. p. 139–60.

    Google Scholar 

  83. Morton DW, Chiel HJ. Neural architectures for adaptive behavior. Trends Neurosci. 1994;17:413–20.

    Article  CAS  PubMed  Google Scholar 

  84. Meyrand P, Simmers J, Moulins M. Construction of a pattern-generating circuit with neurons belonging to different networks. Nature. 1991;351:60–3.

    Article  CAS  PubMed  Google Scholar 

  85. Gestreau C, Milano S, Bianchi AL, Grélot L. Activity of dorsal respiratory group inspiratory neurons during laryngeal-induced fictive coughing and swallowing in decerebrate cats. Exp Brain Res. 1996;108:247–56.

    Article  CAS  PubMed  Google Scholar 

  86. Larson CR, Yajima Y, Ko P. Modification in activity of medullary respiratory-related neurons for vocalization and swallowing. J Neurophysiol. 1994;71:2294–304.

    CAS  PubMed  Google Scholar 

  87. Martin RE. Neuroplasticity and Swallowing. Dysphagia. 2009;24:218–29.

    Article  PubMed  Google Scholar 

  88. Momose-Sato Y, Sato K. Optical recording of vagal pathway formation in the embryonic brainstem. Auton Neurosci Basic Clin. 2006;126–127:39–49.

    Article  CAS  Google Scholar 

  89. Miller AJ, Dunmire CR. Characterization of the postnatal development of superior laryngeal nerve fibers in the postnatal kitten. J Neurobiol. 1976;7:483–94.

    Article  CAS  PubMed  Google Scholar 

  90. Sumi T. The nature and postnatal development of reflex deglutition in the kitten. Jap J Physiol. 1967;17:200–10.

    Article  CAS  Google Scholar 

  91. Wallois F, Khater-Boidin J, Dusaussoy F, Duron B. Oral stimulations induce apnoea in newborn kittens. Neuroreport. 1993;4:903–6.

    Article  CAS  PubMed  Google Scholar 

  92. Doty RW, Richmond WH, Storey AT. Effect of medullary lesions on coordination of deglutition. Exp Neurol. 1967;17:91–106.

    Article  CAS  PubMed  Google Scholar 

  93. Ertekin C, Aydogdu I, Tarlaci S, Turman AB, Kiylioglu N. Mechanisms of dysphagia in suprabulbar palsy with lacunar infarct. Stroke. 2000;31:1370–6.

    Article  CAS  PubMed  Google Scholar 

  94. Martin RE, Sessle BJ. The role of the cerebral cortex in swallowing. Dysphagia. 1993;8:195–202.

    Article  CAS  PubMed  Google Scholar 

  95. Martino R, Terrault N, Ezerzer F, Mikulis D, Diamant NE. Dysphagia in a patient with lateral medullary syndrome: insight into the central control of swallowing. Gastroenterology. 2001;121:420–6.

    Article  CAS  PubMed  Google Scholar 

  96. Prosiegel M, Holing R, Heintze M, Wagner-Sonntag E, Wiseman K. The localization of central pattern generators for swallowing in humans—a clinical-anatomical study on patients with unilateral paresis of the vagal nerve, Avelli’s syndrome, Wallenberg’s syndrome, posterior fossa tumours and cerebellar hemorrhage. Acta Neurochir. 2005;93:85–8.

    Article  CAS  Google Scholar 

  97. Bieger D, Hockman CH. Suprabulbar modulation of reflex swallowing. Expl Neurol. 1976;52:311–24.

    Article  CAS  Google Scholar 

  98. Hamdy S, Aziz Q, Rothwell JC, Singh KD, Barlow J, Hughes DG, Tallis RC, Thompson DG. The cortical topography of human swallowing musculature in health and disease. Nat Med. 1996;2:1217–24.

    Article  CAS  PubMed  Google Scholar 

  99. Aziz Q, Rothwell JC, Barlow J, Thompson DG. Modulation of esophageal responses to magnetic stimulation of the human brain by swallowing and by vagal stimulation. Gastroenterology. 1995;109:1437–45.

    Article  CAS  PubMed  Google Scholar 

  100. Castell DO, Wood JD, Frieling T, Wright FS, Vieth RF. Cerebral electrical potentials evoked by balloon distention of the human esophagus. Gastroenterology. 1990;98:662–6.

    Article  CAS  PubMed  Google Scholar 

  101. Hamdy S, Mikulis DJ, Crawley A, Xue S, Lau H, Henry S, Diamant NE. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol Gastrointest Liver Physiol. 1999;277:G219–25.

    CAS  Google Scholar 

  102. Leopold NA, Daniels SK. Supranuclear control of swallowing. Dysphagia. 2009;25:250–7.

    Article  Google Scholar 

  103. Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol. 2001;85:938–50.

    CAS  PubMed  Google Scholar 

  104. Tougas G, Hudoba P, Fitzpatrick D, Hunt RH, Upton ARM. Cerebral-evoked potential responses following direct vagal and esophageal electrical stimulation in humans. Am J Physiol Gastrointest Liver Physiol. 1993;264:G486–91.

    CAS  Google Scholar 

  105. Valdez DT, Salapatek A, Niznik G, Linden RD, Diamant NE. Swallowing and upper esophageal sphincter contraction with transcranial magnetic-induced electrical stimulation. Am J Physiol Gastrointest Liver Physiol. 1993;264:G213–9.

    CAS  Google Scholar 

  106. Car A. La commande corticale du centre déglutiteur bulbaire. J Physiol Paris. 1970;62:361–86.

    CAS  PubMed  Google Scholar 

  107. Car A, Jean A, Roman C. A pontine primary relay for the superior laryngeal nerve ascending projections. Exp Brain Res. 1975;22:197–210.

    Article  CAS  PubMed  Google Scholar 

  108. Jean A, Car A, Roman C. Comparison of activity in pontine versus medullary neurones during swallowing. Exp Brain Res. 1975;22:211–20.

    Article  CAS  PubMed  Google Scholar 

  109. Car A. Etude macrophysiologique et microphysiologique de la zone déglutitrice du cortex frontal. J Physiol Paris. 1977;73:945–61.

    CAS  PubMed  Google Scholar 

  110. Martin RE, Murray GM, Kemppainen P, Masuda Y, Sessle BJ. Functional properties of neurons in the primate tongue primary motor cortex during swallowing. J Neurophysiol. 1997;78:1516–30.

    CAS  PubMed  Google Scholar 

  111. Blessing WB. The lower brainstem and bodily homeostasis. New York: Oxford University Press; 1997.

    Google Scholar 

  112. Jean A. The nucleus tractus solitarius: neuroanatomic, neurochemical and functional aspects. Arch Int Physiol Biochim Biophys. 1991;99:A3–52.

    Article  CAS  PubMed  Google Scholar 

  113. Berthoud HR. Neural systems controlling food intake and energy balance in the modern world. Curr Opin Clin Nutr Metab Care. 2003;6:615–20.

    Article  CAS  PubMed  Google Scholar 

  114. Grill HJ. Distributed neural control of energy balance: contributions from hindbrain and hypothalamus. Obesity. 2006;14(5):216S–21.

    Article  PubMed  Google Scholar 

  115. Grill HJ, Kaplan JM. The neuroanatomical axis for control of energy balance. Front Neuroendocrinol. 2002;23:2–40.

    Article  CAS  PubMed  Google Scholar 

  116. Félix B, Jean A, Roman C. Leptin inhibits swallowing in rats. Am J Physiol Regul Integr Comp Physiol. 2006;291:R657–63.

    Article  PubMed  CAS  Google Scholar 

  117. Bariohay B, Lebrun B, Moyse E, Jean A. Brain-derived neurotrophic factor plays a role as an anorexigenic factor in the dorsal vagal complex. Endocrinology. 2005;146:5612–20.

    Article  CAS  PubMed  Google Scholar 

  118. Bariohay B, Roux J, Tardivel C, Trouslard J, Jean A, Lebrun B. Brain-derived neurotrophic factor/tropomyosin-related kinase receptor type B signaling is a downstream effector of the brainstem melanocortin system in food intake control. Endocrinology. 2009;150:2646–53.

    Article  CAS  PubMed  Google Scholar 

  119. Lebrun B, Bariohay B, Moyse E, Jean A. Brain-derived neurotrophic factor (BDNF) and food intake regulation: a minireview. Auton Neurosci. 2006;126–127:30–8.

    Article  PubMed  CAS  Google Scholar 

  120. Bailey EF. A tasty morsel: the role of the dorsal vagal complex in the regulation of food intake and swallowing. Am J Physiol Regul Integr Comp. 2008;295:R1048–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Dallaporta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jean, A., Dallaporta, M. (2013). Brainstem Control of Deglutition: Swallowing Pattern Generator. In: Shaker, R., Belafsky, P., Postma, G., Easterling, C. (eds) Principles of Deglutition. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3794-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3794-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3793-2

  • Online ISBN: 978-1-4614-3794-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics