Skip to main content

Red Cell Transfusions in Patients with Hematologic Malignancies

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Although the transfusion of red cells is a relatively common clinical event, patients with hematologic malignancies have special requirements for their red cell products and are at increased risk for certain adverse effects of transfusion. This chapter will provide an overview of many of the basic principles of transfusion medicine with a focus on the issues which are relevant to the restoration of oxygen carrying capacity in the patient with a hematologic malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Erstad BL, Gales BI, Rappaport WD. The use of albumin in clinical practice. Arch Intern Med. 1991;151:901–11.

    Article  PubMed  CAS  Google Scholar 

  2. Haynes GR, Navickis RJ, Wilkes MM. Albumin administration – what is the evidence of clinical benefit? A systematic review of randomized controlled trials. Eur J Anaesthesiol. 2003;20:771–93.

    Article  PubMed  CAS  Google Scholar 

  3. Schuster KM, Davis KA, Liu FY, Maerz LL, Kaplan LJ. The status of massive transfusion protocols in United States trauma centers: massive transfusion or massive confusion? Transfusion. 2010;50:1545–51.

    Article  PubMed  Google Scholar 

  4. Baldini M, Costea N, Dameshek W. The viability of stored human platelets. Blood. 1960;16:1669–92.

    PubMed  CAS  Google Scholar 

  5. Rapaport GI, Ames SB, Mikkelsen S. The levels of antihemophilic globulin and proaccelerin in fresh and bank blood. Am J Clin Pathol. 1957;31:297–304.

    Google Scholar 

  6. Carson TH, editor. Standards for blood banks and transfusion services. 27th ed. Bethesda, MD: AABB; 2011.

    Google Scholar 

  7. Shi PA, Ness PM. Two-unit red cell apheresis and its potential advantages over traditional whole-blood donation. Transfusion. 1999;39:218–25.

    Article  PubMed  CAS  Google Scholar 

  8. Pineda AA, Rippeteau ND, Clare DE, Bukowske BM. Infusion flow rates of whole blood and AS-1-preserved erythrocytes: a comparison. Mayo Clin Proc. 1987;62:119–202.

    Google Scholar 

  9. Hogge DE, Dutcher JP, Aisner J, Schiffer CA. Lymphocytotoxic antibody is a predictor of response to random-donor platelet transfusion. Am J Hematol. 1983;14:363–9.

    Article  PubMed  CAS  Google Scholar 

  10. Dzik S. Leukodepletion blood filters: filter design and mechanisms of leukocyte removal. Transfus Med Rev. 1993;7:65–77.

    Article  PubMed  CAS  Google Scholar 

  11. Sirchia G, Rebulla P, Parravicini A, Carnelli V, Gianotti GA, Bertolini F. Leukocyte depletion of red cell units at the bedside by transfusion through a new filter. Transfusion. 1987;27:402–5.

    Article  PubMed  CAS  Google Scholar 

  12. Domen RE, Williams L. Use of the Sepacell filter for preparing white cell-depleted red cells. Transfusion. 1988;28:506–7.

    Article  PubMed  CAS  Google Scholar 

  13. Bock M, Wagner M, Knuppel W, Riedner C, Pachmann U, Heim MU, Mempel W. Preparation of white cell-depleted blood: comparison of two bedside filter systems. Transfusion. 1990;30:26–9.

    Article  PubMed  CAS  Google Scholar 

  14. Sirchia G, Wenz B, Rebulla P, Parravicini A, Carnelli V, Bertolini F. Removal of white cells from red cells by transfusion through a new filter. Transfusion. 1990;30:30–3.

    Article  PubMed  CAS  Google Scholar 

  15. Koerner K, Sahlmen P, Zimmermann B, Kubanek B. Preparation of leukocyte-poor red cell concentrates:comparison of five different filters. Vox Sang. 1991;60:61–2.

    Article  PubMed  CAS  Google Scholar 

  16. Lane TA. Leukocyte reduction of cellular blood components: effectiveness, benefits, quality control, and costs. Arch Pathol Lab Med. 1994;118:392–404.

    PubMed  CAS  Google Scholar 

  17. Vyas GN, Holmdahl L, Perkins HA, Fudenberg HH. Serologic specificity of human anti-IgA and its significance in transfusion. Blood. 1969;34:573–81.

    PubMed  CAS  Google Scholar 

  18. Yap PL, Pryde EAD, McClelland DBL. IgA content of frozen-thawed washed red blood cells and blood products measured by radioimmunoassay. Transfusion. 1982;22:36–8.

    Article  PubMed  CAS  Google Scholar 

  19. Palmer DS, O’Toole J, Montreuil T, Scalia V, Yi Q-L, Goldman M, Towns D. Screening of Canadian Blood Services donors for severe immunoglobulin A deficiency. Transfusion. 2010;50: 1524–31.

    Article  PubMed  CAS  Google Scholar 

  20. Dacie JV. Transfusion of saline-washed red cells in nocturnl hemoglobinuria. Clin Sci. 1948;7:65–75.

    PubMed  CAS  Google Scholar 

  21. Brecher ME, Taswell HF. Paroxysmal nocturnal hemoglobinuria and the transfusion of washed red cells: a myth revisited. Transfusion. 1989;29:681–5.

    Article  PubMed  CAS  Google Scholar 

  22. Rosse WF. Transfusion in paroxysmal nocturnal hemoglobinuria: to wash or not to wash. Transfusion. 1989;29:663–4.

    Article  PubMed  CAS  Google Scholar 

  23. Meryman HT, Hornblower M. A method for freezing and washing red blood cells using a high glycerol concentration. Transfusion. 1972;12:145–56.

    PubMed  CAS  Google Scholar 

  24. Pert JH, Schork PK, Moore R. Low-temperature preservation of human erythrocytes: biochemical and clinical aspects. Bibl Haematol. 1964;19:47–53.

    PubMed  CAS  Google Scholar 

  25. Kurtz SR, Van Deinse WH, Valeri CR. The immunocompetence of residual lymphocytes at various stages of red cell cryopreservation with 40% W/V glycerol in an ionic medium at −80°C. Transfusion. 1978;18:441–7.

    Article  PubMed  CAS  Google Scholar 

  26. Henkelman S, Lagerberg JWM, Graaff R, Rakhorst G, Van Oeveren WV. The effects of cryopreservation on red blood cell rheologic properties. Transfusion. 2010;50:2393–401.

    Article  PubMed  Google Scholar 

  27. Storb R, Thomas ED, Buckner CD, et al. Marrow transplantation in thirty “untransfused” patients with severe aplastic anemia. Ann Intern Med. 1980;92:30–6.

    PubMed  CAS  Google Scholar 

  28. Dwyre DM, Holland PV. Transfusion-associated graft-versus-host disease. Vox Sang. 2008;95:85–93.

    Article  PubMed  CAS  Google Scholar 

  29. McMilin KD, Johnson RL. HLA homozygosity and the risk of related-donor transfusion-associated graft-versus-host-disease. Transfus Med Rev. 1993;7:37–41.

    Article  PubMed  CAS  Google Scholar 

  30. Petz LD, Calhoun L, Yam P, et al. Transfusion-associated graft-versus-host disease in immunocompetent patients: report of a fatal case associated with transfusion of blood from a second-degree relative, and a survey of predisposing factors. Transfusion. 1993;33:742–50.

    Article  PubMed  CAS  Google Scholar 

  31. Maung ZT, Wood AC, Jackson GH, Turner GE, Appleton AL, Hamilton PJ. Transfusion-associated graft-versus-host disease in fludarabine-treated B-chronic lymphocytic leukemia. Br J Haematol. 1994;88:649–52.

    Article  PubMed  CAS  Google Scholar 

  32. Briz M, Cabrera R, Sanjuan I, Forés R, Diez JL, Herrero M, Regidor C, Algora M, Fernandez MN. Diagnosis of transfusion-associated graft-versus-host disease by polymerase chain reaction in fludarabine-treated B-chronic lymphocytic leukaemia. Br J Haematol. 1995;91:409–11.

    Article  PubMed  CAS  Google Scholar 

  33. Leitman SF, Tisdale JF, Bolan CD, Popovsky MA, Klippel JH, Balow JE, Boumpas DT, Illei GG. Transfusion-associated GVHD after fludarabine therapy in a patient with systemic lupus erythematosus. Transfusion. 2003;43:1667–71.

    Article  PubMed  Google Scholar 

  34. Lowenthal RM, Challis DR, Griffiths AE, Chappell RA, Goulder PJ. Transfusion- associated graft-versus-host disease: report of an occurrence following the administration of irradiated blood. Transfusion. 1993;33:524–9.

    Article  PubMed  CAS  Google Scholar 

  35. Preiksaitis JK. Indications for the use of cytomegalovirus-seronegative blood products. Transfus Med Rev. 1991;5:1–17.

    Article  PubMed  CAS  Google Scholar 

  36. Sayers MH, Anderson KC, Goodnough LT, Kurtz SR, Lane TA, Pisciotto P, Silberstein LE. Reducing the risk for transfusion-transmitted cytomegalovirus infection. Ann Int Med. 1992;116:55–62.

    PubMed  CAS  Google Scholar 

  37. Hillyer CD, Snydman DR, Berkman EM. The risk of cytomegalovirus infection in solid organ and bone marrow transplant recipients: transfusion of blood products. Transfusion. 1990;30:659–66.

    Article  PubMed  CAS  Google Scholar 

  38. Gilbert GL, Hayes K, Hudson IL, James J. Prevention of ­transfusion-acquired cytomegalovirus infection in infants by blood filtration to remove leucocytes. Neonatal Cytomegalovirus Infection Study Group. Lancet. 1989;1:1228–31.

    Article  PubMed  CAS  Google Scholar 

  39. Bowden RA, Slichter SJ, Sayers MH, Mori M, Cays MJ, Meyers JD. Use of leukocyte-depleted platelets and cytomegalovirus-seronegative red blood cells for prevention of primary cytomegalovirus infection after marrow transplant. Blood. 1991;78: 246–50.

    PubMed  CAS  Google Scholar 

  40. Smith KL, Cobain T, Dunstan RA. Removal of cytomegalovirus DNA from donor blood by filtration. Br J Haematol. 1993;83:640–2.

    Article  PubMed  CAS  Google Scholar 

  41. Bowden RA, Slichter SJ, Sayers M, et al. A comparison of filtered leukocyte-reduced and cytomegalovirus (CMV) seronegative blood products for the prevention of transfusion-associated CMV infection after marrow transplant. Blood. 1993;86:3598–603.

    Google Scholar 

  42. Preiksaitis JK. The cytomegalovirus-“safe” blood product: is leukoreduction equivalent to antibody screening? Tranfus Med Rev. 2000;14:112–36.

    Article  CAS  Google Scholar 

  43. Nichols WG, Price TH, Gooley T, Corey L, Boeckh M. Transfusion-transmitted cytomegalovirus infection after receipt of leukoreduced blood products. Blood. 2003;101:4195–200.

    Article  PubMed  CAS  Google Scholar 

  44. Vamvakas EC, Blajchman MA. Blood still kills: six strategies to further reduce allogeneic blood transfusion-related mortality. Transfus Med Rev. 2010;24:77–124.

    Article  PubMed  Google Scholar 

  45. Wang JK, Klein HG. Red blood cell transfusion in the treatment and management of anaemia: the search for the elusive transfusion trigger. Vox Sang. 2010;98:2–11.

    Article  PubMed  CAS  Google Scholar 

  46. AuBuchon JP. Minimizing donor exposure in hemotherapy. Arch Pathol Lab Med. 1994;118:380–91.

    PubMed  CAS  Google Scholar 

  47. Stehling L, Simon TL. The red blood cell transfusion trigger: physiology and clinical studies. Arch Pathol Lab Med. 1994; 118:429–34.

    PubMed  CAS  Google Scholar 

  48. Office of Medical Application of Research, National Institutes of Health. Perioperative red cell transfusion. JAMA. 1988;260:2700–3.

    Article  Google Scholar 

  49. Corwin H. Anemia and red blood cell transfusion in the critically ill. Semin Dial. 2006;19:513–6.

    Article  PubMed  Google Scholar 

  50. Carson JL, Hill S, Carless P, Hebert PC, Henry DA. Transfusion triggers: a systematic review of the literature. Transfus Med Rev. 2002;16:187–99.

    Article  PubMed  Google Scholar 

  51. Russell JA, Toy JL, Powles RL. Plasma exchange in malignant paraproteinemias. Exp Hematol. 1977;5(suppl):105–16.

    Google Scholar 

  52. Szczepiorkowski ZM, Winters JL, Bandarenko N, Linenberger ML, Marques MB, Sarode R, Schwartz J, Weinstein R, Shaz BH. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the apheresis applications committee of the American Society for Apheresis. J Clin Apher. 2010;25:83–177.

    Article  PubMed  Google Scholar 

  53. Lichtman MA, Rowe JM. Hyperleukocytic leukemias: rheological, clinical, and therapeutic considerations. Blood. 1982;60: 279–83.

    PubMed  CAS  Google Scholar 

  54. Harris AL. Leukostasis associated with blood transfusion in acute myeloid leukemia. Br Med J. 1978;1:1169–71.

    Article  PubMed  CAS  Google Scholar 

  55. Gajewski JL, Petz LD, Calhoun L, O’rourke S, Landaw EM, Lyddane NR, et al. Hemolysis of transfused group O red blood cells in minor ABO-incompatible unrelated-donor bone marrow transplants in patients receiving cyclosporine without posttransplant methotrexate. Blood. 1992;79:3076–85.

    PubMed  CAS  Google Scholar 

  56. Sthoeger ZM, Sthoeger D, Shtalrid M, Sigler E, Geltner D, Berrebi A. Mechanism of autoimmune hemolytic anemia in chronic lymphocytic leukemia. Am J Hematol. 1993;43:259–64.

    Article  PubMed  CAS  Google Scholar 

  57. Tosti S, Caruso R, D’Adamo F, et al. Severe autoimmune hemolytic anemia in a patient with chronic lymphocytic leukemia responsive to fludarabine-based treatment. Ann Hematol. 1992;65: 238–9.

    Article  PubMed  CAS  Google Scholar 

  58. Garratty G. Immune hemolytic anemia associated with drug ­therapy. Blood Rev. 2010;24:143–50.

    Article  PubMed  CAS  Google Scholar 

  59. Shirey RS, Boyd JS, Parwani AV, Tanz WS, Ness PM, King KE. Prophylactic antigen-matched donor blood for patients with warm autoantibodies: an algorithm for transfusion management. Transfusion. 2002;42:1435–41.

    Article  PubMed  CAS  Google Scholar 

  60. Koury ST, Bondurant MC, Koury MJ. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood. 1988;71:524–7.

    PubMed  CAS  Google Scholar 

  61. Lacombe C, DaSilva L, Bruneval P, et al. Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J Clin Invest. 1988;81:620–3.

    Article  PubMed  CAS  Google Scholar 

  62. Koury ST, Bondurant MC, Koury MJ, Semenza GL. Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood. 1991;77:2497–503.

    PubMed  CAS  Google Scholar 

  63. Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, Seehra J, Jones SS, Hewick R, Fritsch EF, Kawakita M, Shimizu T, Miyake T. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature. 1985;313: 806–10.

    Article  PubMed  CAS  Google Scholar 

  64. Lin F-K, Suggs S, Lin D-H, Browne JK, Smalling R, Egrie JC, Chen KK, Fox GM, Martin F, Stabinsky Z, et al. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci USA. 1985;82:7580–4.

    Article  PubMed  CAS  Google Scholar 

  65. Cazzola M, Ponchia L, Beguin Y, Rosti V, Bergamschi G, Liberator NL, Fregoni V, Nalli G, Barosi G, Ascari E. Subcutaneous erythropoietin for treatment of refractory anemia in hematologic disorders. Results of a phase I/II clinical trial. Blood. 1992;79:29–37.

    PubMed  CAS  Google Scholar 

  66. Ludwig H, Fritz E, Leitgeb C, Krainer M, Kuehrer I, Sagaster P, Umek H. Erythropoietin treatment for chronic anemia of selected hematologic malignancies and solid tumors. Ann Oncol. 1993;4:161–7.

    PubMed  CAS  Google Scholar 

  67. Spivak JL. Recombinant human erythropoietin and the anemia of cancer. Blood. 1994;84:997–1004.

    PubMed  CAS  Google Scholar 

  68. Rizzo JD, Brouwers M, Hurley P, Seidenfeld J, Arcasoy MO, Spivak JL, Bennett CL, Bohlius J, Evanchuk D, Goode MJ, Jakubowski AA, Regan DH, Somerfield MR. American Society of Hematology/American Society of Clinical Oncology clinical practice guideline update on the use of epoetin and darbepoetin in adult patients with cancer. Blood. 2010;116:4045–59.

    Article  PubMed  CAS  Google Scholar 

  69. Haradin AR, Weed RI, Reed CF. Changes in the physical properties of stored erythrocytes: relationship to survival in vivo. Transfusion. 1969;9:229–37.

    Article  PubMed  CAS  Google Scholar 

  70. Beutler E, Wood L. The in vivo regeneration of red cell 2,3-dephosphoglyceric acid (DPG) after transfusion of stored blood. J Lab Clin Med. 1969;74:300–4.

    PubMed  CAS  Google Scholar 

  71. Wolf PL, McCarthy LJ, Hafleigh B. Extreme hypercalcemia following blood transfusion combined with intravenous calcium. Vox Sang. 1970;19:544–5.

    Article  Google Scholar 

  72. Moore GL, Peck CC, Sohmer PR, Zuck TF. Some properties of blood stored in anticoagulant CPDA-1 solution. A brief summary. Transfusion. 1981;21:135–7.

    Article  PubMed  CAS  Google Scholar 

  73. Swank RL. Alteration of blood on storage: measurement of adhesiveness of ‘aging’ platelets and leucocytes and their removal by filtration. N Engl J Med. 1961;265:728–33.

    Article  PubMed  CAS  Google Scholar 

  74. McNamara JJ, Molot MD, Stremple JF. Screen filtration pressure in combat casualties. Ann Surg. 1970;172:334–41.

    Article  PubMed  CAS  Google Scholar 

  75. Reul GJ, Beall AC, Greenberg SD. Protection of the pulmonary microvasculature by fine screen blood filtration. Chest. 1974;66:4–9.

    Article  PubMed  Google Scholar 

  76. Bredenberg CE. International forum. does a relationship exist between massive blood transfusion and the adult respiratory distress syndrome? Vox Sang. 1977;32:311–3.

    Article  Google Scholar 

  77. Tobey RE, Kopriva CJ, Homer LD. Pulmonary gas exchange following hemorrhagic and massive transfusion in the baboon. Ann Surg. 1974;179:316–21.

    Article  PubMed  CAS  Google Scholar 

  78. Solis RT, Walker BD. International forum: does a relationship exist between massive blood transfusion and the adult respiratory distress syndrome? Vox Sang. 1977;32:319–20.

    Google Scholar 

  79. Jaeger RJ, Rubin RJ. Migration of a phthalate ester plasticizer from polyvinyl chloride blood bags into stored human blood and its localization in human tissues. N Engl J Med. 1972;287:1114–8.

    Article  PubMed  CAS  Google Scholar 

  80. Inoue K, Kawaguchi M, Yamanaka R, Higuchi T, Ito R, Saito K, Nakazawa H. Evaluation and analysis of exposure levels of di(2-ethylhexyl) phthalate from blood bags. Clin Chim Acta. 2005;358:159–66.

    Article  PubMed  CAS  Google Scholar 

  81. Rubin RJ, Ness PM. What price progress? An update on vinyl plastic blood bags. Transfusion. 1989;29:358–61.

    Article  PubMed  CAS  Google Scholar 

  82. Statement on use of plasticizer DEHP in PVC Blood Bags-6/03. http://www.aabb.org/pressroom/statements/pages/dehp0603.aspx. Accessed 1 Dec 2010.

  83. Hogman CF, Eriksson L, Ericson A, Reppucci AJ. Storage of saline-adenine-glucose-mannitol-suspended red cells in a new plastic container: polyvinyl chloride plasticized with butyryl-n-trihexyl-citrate. Transfusion. 1991;31:26–9.

    Article  PubMed  CAS  Google Scholar 

  84. Carmen R. The selection of plastic materials for blood bags. Transfus Med Rev. 1993;7:1–10.

    Article  PubMed  CAS  Google Scholar 

  85. Oliva EN, Ronco F, Marino A, Alati C, Pratico G, Nobile F. Iron chelation therapy associated with improvement of hematopoiesis in transfusion-dependent patients. Transfusion. 2010;50:1568–70.

    Article  PubMed  Google Scholar 

  86. Shander A, Sazama K. Clinical consequences of iron overload from chronic red blood cell transfusions, its diagnosis, and its management by chelation therapy. Transfusion. 2010;50:1144–55.

    Article  PubMed  CAS  Google Scholar 

  87. Goldman M, Blajchman MA. Blood product-associated bacterial sepsis. Transfus Med Rev. 1991;5:73–83.

    Article  PubMed  CAS  Google Scholar 

  88. Sazama K. Bacteria in blood for transfusion: a review. Arch Pathol Lab Med. 1994;118:350–65.

    PubMed  CAS  Google Scholar 

  89. Payne R. The association of febrile transfusion reactions with leuko-agglutinins. Vox Sang. 1957;2:233–41.

    Article  PubMed  CAS  Google Scholar 

  90. Brittingham TE, Chaplin H. Febrile transfusion reactions caused by sensitivity to donor leukocytes and platelets. JAMA. 1957;165:819–25.

    Article  CAS  Google Scholar 

  91. Perkins HA, Payne R, Ferguson J, Wood M. Nonhemolytic febrile transfusion reactions: quantitative effects of blood components with emphasis on isoantigenic incompatibility of leukocytes. Vox Sang. 1966;11:578–600.

    Article  PubMed  CAS  Google Scholar 

  92. Menitove JE, McElligott MC, Aster RH. Febrile transfusion reaction: what blood component should be given next? Vox Sang. 1982;42:318–21.

    Article  PubMed  CAS  Google Scholar 

  93. Wenz B. Microaggregate blood filtration and the febrile transfusion reaction: a comparative study. Transfusion. 1983;23:95–8.

    Article  PubMed  CAS  Google Scholar 

  94. King KE, Shirey RS, Thoman SK, et al. Universal leukoreduction decreases the incidence of febrile nonhemolytic transfusion reactions to RBCs. Transfusion. 2004;44:25–9.

    Article  PubMed  Google Scholar 

  95. Mangano MM, Chambers LA, Kruskall MS. Limited efficacy of leukopoor platelets for prevention of febrile transfusion reactions. Am J Clin Pathol. 1991;95:733–8.

    PubMed  CAS  Google Scholar 

  96. Heddle NM, Klama LN, Griffith L, Griffith L, Roberts R, Shukla G, Kelton JG. A prospective study to identify the risk factors associated with acute reactions to platelet and red cell transfusions. Transfusion. 1993;33:794–7.

    Article  PubMed  CAS  Google Scholar 

  97. Heddle NM, Klama L, Singer J, et al. The role of the plasma from platelet concentrates in transfusion reactions. N Engl J Med. 1994;331:625–8.

    Article  PubMed  CAS  Google Scholar 

  98. Silliman CC, Ambrusco DR, Boshkov LK. Transfusion-related acute lung injury (TRALI). Blood. 2005;105:2266–73.

    Article  PubMed  CAS  Google Scholar 

  99. Middelburg RA, van Stein D, Zupanska B, Uhrynowska M, Gajic O, Muniz-Diaz E, Galvez NN, Silliman CC, Krusius T, Wallis JP, Vandenbroucke JP, Briet E, Van Der Bom JG. Female donors and transfusion-related acute lung injury. A case-referent study from the International TRALI Unisex Research Group. Transfusion. 2010;50:2447–54.

    Article  PubMed  Google Scholar 

  100. Eder AF, Herron RM, Strupp A, Dy B, White J, Notari EP, Dodd RY, Benjamin RJ. Effective reduction of transfusion-related acute lung injury risk with male-predominant plasma strategy in the American Red Cross (2006–2008). Transfusion. 2010;50: 1732–42.

    Article  PubMed  Google Scholar 

  101. Silliman CC, Boshkov LK, Mehdizadehhkashi Z, et al. Transfusion-related acute lung injury: epidemiology and a prospective analysis of etiologic factors. Blood. 2003;101:454–62.

    Article  PubMed  CAS  Google Scholar 

  102. Perkins HA, Busch MP. Transfusion-associated infections: 50 years of relentless challenges and remarkable progress. Transfusion. 2010;50:2080–99.

    Article  PubMed  Google Scholar 

  103. Busch MP, Kleinman SH, Nemo GJ. Current and emerging infectious risks of blood transfusions. JAMA. 2003;289:959–62.

    Article  PubMed  Google Scholar 

  104. Busch MP, Glynn SA, Stramer SL, Strong DM, Cagliioti S, Wright DJ, Pappalardo B, Kleinman SH, NHLBI-REDS NAT Study Group. A new strategy for estimating risks of transfusion-transmitted viral infections based on rates of detection of recently infected donors. Transfusion. 2005;45:254–64.

    Article  PubMed  Google Scholar 

  105. Ammann AJ, Cowan MJ, Wara DJ, Weintraub P, Dritz S, Goldman H, Perkins HA. Acquired immunodeficiency in an infant: possible transmission by means of blood products. Lancet. 1983;1:956–8.

    Article  PubMed  CAS  Google Scholar 

  106. Petricciani JC. Licensed tests for antibody to human T lymphotrophic virus type III: sensitivity and specificity. Ann Int Med. 1985;103:726–9.

    PubMed  CAS  Google Scholar 

  107. Boeckh M, Leisenring W, Riddell SR, et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood. 2003;101:407–14.

    Article  PubMed  CAS  Google Scholar 

  108. Gartner JG. Thymic involution with loss of Hassall’s corpuscles mimicking thymic dysplasia in a child with transfusion-associated graft-versus-host disease. Pediatr Pathol. 1991;11:449–56.

    Article  PubMed  CAS  Google Scholar 

  109. Blumberg N, Peck K, Ross K, Avila E. Immune response to chronic red blood cell transfusion. Vox Sang. 1983;44:212–7.

    Article  PubMed  CAS  Google Scholar 

  110. Fluit CRMG, Kunst VAJM, Drenthe-Schonk AM. Incidence of red cell antibodies after multiple blood transfusion. Transfusion. 1990;30:532–5.

    Article  PubMed  CAS  Google Scholar 

  111. Blumberg N, Ross K, Avila E, Peck K. Should chronic transfusions be matched for antigens other than ABO and Rh(D)? Vox Sang. 1984;47:205–8.

    Article  PubMed  CAS  Google Scholar 

  112. Sniecinski I, O’Donnell MR, Nowicki B, Hill LR. Prevention of refractoriness and HLA-alloimmunization using filtered blood products. Blood. 1988;71:1402–7.

    PubMed  CAS  Google Scholar 

  113. Andreu G, Dewailly J, Leberre C, Quarre MC, Bidet ML, Tardivel R. Prevention of HLA immunization with leukocyte-poor packed red cells and platelet concentrates obtained by filtration. Blood. 1988;72:964–9.

    PubMed  CAS  Google Scholar 

  114. Saarinen UM, Kekomaki R, Siimes MA, Myllyla G. Effective prophylaxis against platelet refractoriness in multitransfused patients by use of leukocyte-free blood components. Blood. 1990;75:512–7.

    PubMed  CAS  Google Scholar 

  115. Oksanen K, Kekomaki R, Ruutu T, et al. Prevention of alloimmunization in patients with acute leukemia by the use of white cell-reduced blood components- a randomized trial. Transfusion. 1991;31:588–94.

    Article  PubMed  CAS  Google Scholar 

  116. The Trial to Reduce Alloimmunization to Platelets Study Group: Leukocyte reduction and ultraviolet B irradiation of platelets to prevent alloimmunization and refractoriness to platelet transfusions. N Engl J Med 1997;337:1861–9.

    Google Scholar 

  117. Seftel MD, Growe GH, Petraszko T, Benny WB, Le A, Lee C-Y, Spinelli JJ, Suterland HJ, Tsang P, Hogge DE. Universal prestorage leukoreduction in Canada decreases platelet alloimmunization and refractoriness. Blood. 2004;103:333–9.

    Article  PubMed  CAS  Google Scholar 

  118. Ness PM, Walsh PC, Zahurak M, Baldwin ML, Piantadosi S. Prostate cancer recurrence in radical surgery patients receiving autologous or homologous blood. Transfusion. 1992;32:31–6.

    Article  PubMed  CAS  Google Scholar 

  119. Blumberg N, Heal j. Effects of transfusion on immune function. Cancer recurrence and infection. Arch Pathol Lab Med. 1994;118:371–9.

    PubMed  CAS  Google Scholar 

  120. Blajchman MA, Bardossy L, Carmen R, et al. Allogeneic blood transfusion-induced enhancement of tumor growth: Two animal models showing amelioration by leukodepletion and passive transfer using spleen cells. Blood. 1993;81:1880–2.

    PubMed  CAS  Google Scholar 

  121. Rebulla P, Sirchia G. Duration of first remission in leukaemic recipients of leucocyte-poor blood components. Br J Haematol. 1992;80:135.

    Article  PubMed  CAS  Google Scholar 

  122. Rebulla P, Pappalettera M, Barbui T. Duration of first remission in leukaemic recipients of leucocyte-poor blood components. Br J Haematol. 1990;75:441–2.

    Article  PubMed  CAS  Google Scholar 

  123. Oksanen K, Elonen E, for the Finnish Leukemia Group. Impact of leucocyte-depleted blood components on the haematological recovery and prognosis of patients with acute myeloid leukaemia. Br J Haematol. 1993;84:639–47.

    Article  PubMed  CAS  Google Scholar 

  124. Vamvakas EC, Blajchman MA. Deleterious clinical effects of transfusion-associated immunomodulation: fact or fiction? Blood. 2001;97:1180–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen E. King M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

King, K.E., Ness, P.M. (2013). Red Cell Transfusions in Patients with Hematologic Malignancies. In: Wiernik, P., Goldman, J., Dutcher, J., Kyle, R. (eds) Neoplastic Diseases of the Blood. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3764-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3764-2_55

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3763-5

  • Online ISBN: 978-1-4614-3764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics