Skip to main content

Haematogenous Models of Metastases

  • Chapter
  • First Online:
Experimental and Clinical Metastasis
  • 759 Accesses

Abstract

Animal models of cancer and of metastasis in particular, provide a critical link between in vitro studies and the treatment of human disease. Animal models allow scientists to understand and interpret disease pathogenesis in an environment in which metastatic cells are constantly bombarded by autocrine, paracrine, and endocrine signals from a multitude of sources. Disease pathogenesis can only be elucidated through observation of organs, organ systems, and, ultimately, whole organisms. In addition to contributing to our knowledge of disease pathogenesis, animal models also provide an avenue for testing both the safety and efficacy of various anti-metastatic drugs and biological compounds. Animal models allow interpretation of the physiological effects of administrating a drug or biological compound in a complex organism. In this respect, animal models are critical to the drug development process and are a required element of the drug approval process. Within the umbrella term ‘animal models’, there are various types of models that present unique advantages and disadvantages to understanding metastasis and the ability to test anti-metastatic compounds. Ideally, animal models that closely mimic human cancers, with respect to disease duration, progression, mode of dissemination, and metastatic location, are desirable. However, due to the often inefficiency that is inherent in the metastatic process, animal models in which metastasis takes many years to develop are impractical. To overcome this innate obstacle, several different types of animal models have been developed to expedite the metastatic process: there are ectopic models, in which malignant cells are explanted into foreign locations on the animal, and there are haematogenous models of metastasis, in which cells are dispersed into circulation with the intention of simulating a natural course of dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Samra AB et al (1992) Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci U S A 89:2732–2736

    Article  PubMed  CAS  Google Scholar 

  • Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405

    PubMed  CAS  Google Scholar 

  • Bauerle T et al (2008) Bevacizumab inhibits breast cancer-induced osteolysis, surrounding soft tissue metastasis, and angiogenesis in rats as visualized by VCT and MRI. Neoplasia 10:511–520

    PubMed  Google Scholar 

  • Blackwell KL et al (2000) Tamoxifen inhibits angiogenesis in estrogen receptor-negative animal models. Clin Cancer Res 6:4359–4364

    PubMed  CAS  Google Scholar 

  • Bos PD et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009

    Article  PubMed  CAS  Google Scholar 

  • Brodt P et al (1997) Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int J Cancer 71:612–619

    Article  PubMed  CAS  Google Scholar 

  • Bundred NJ et al (1991) Parathyroid hormone related protein and hypercalcaemia in breast cancer. Bmj 303:1506–1509

    Article  PubMed  CAS  Google Scholar 

  • Bundred NJ, Walls J, Ratcliffe WA (1996) Parathyroid hormone-related protein, bone metastases and hypercalcaemia of malignancy. Ann R Coll Surg Engl 78:354–358

    PubMed  CAS  Google Scholar 

  • Chapman PB et al (1999) Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J Clin Oncol 17:2745–2751

    PubMed  CAS  Google Scholar 

  • Charafe-Jauffret E et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69:1302–1313

    Article  PubMed  CAS  Google Scholar 

  • Chiarodo A (1991) National Cancer Institute roundtable on prostate cancer: future research directions. Cancer Res 51:2498–2505

    PubMed  CAS  Google Scholar 

  • Dejana E et al (1992) Endothelial leukocyte adhesion molecule-1-dependent adhesion of colon carcinoma cells to vascular endothelium is inhibited by an antibody to Lewis fucosylated type I carbohydrate chain. Lab Invest 66:324–330

    PubMed  CAS  Google Scholar 

  • Di Cesare S et al (2007) In vitro characterization and inhibition of the CXCR4/CXCL12 chemokine axis in human uveal melanoma cell lines. Cancer Cell Int 7:17

    Article  PubMed  Google Scholar 

  • Diener-West M et al (2004) Screening for metastasis from choroidal melanoma: the collaborative ocular melanoma study group report 23. J Clin Oncol 22:2438–2444

    Article  PubMed  Google Scholar 

  • Ding Z, Issekutz TB, Downey GP, Waddell TK (2003) L-selectin stimulation enhances functional expression of surface CXCR4 in lymphocytes: implications for cellular activation during adhesion and migration. Blood 101:4245–4252

    Article  PubMed  CAS  Google Scholar 

  • Eggermont AM, Kirkwood JM (2004) Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur J Cancer 40:1825–1836

    Article  PubMed  CAS  Google Scholar 

  • Fidler IJ, Nicolson GL (1977) Fate of recirculating B16 melanoma metastatic variant cells in parabiotic syngeneic recipients. J Natl Cancer Inst 58:1867–1872

    PubMed  CAS  Google Scholar 

  • Fidler IJ, Poste G (2008) The “seed and soil” hypothesis revisited. Lancet Oncol 9:808

    Article  PubMed  Google Scholar 

  • Gerber HP, Ferrara N (2005) Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 65:671–680

    PubMed  CAS  Google Scholar 

  • Guise TA et al (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 98:1544–1549

    Article  PubMed  CAS  Google Scholar 

  • Hamada K et al (2008) Liver metastasis models of colon cancer for evaluation of drug efficacy using NOD/Shi-scid IL2Rgammanull (NOG) mice. Int J Oncol 32:153–159

    PubMed  CAS  Google Scholar 

  • Haq M, Goltzman D, Tremblay G, Brodt P (1992) Rat prostate adenocarcinoma cells disseminate to bone and adhere preferentially to bone marrow-derived endothelial cells. Cancer Res 52:4613–4619

    PubMed  CAS  Google Scholar 

  • Holleran JL, Miller CJ, Edgehouse NL, Pretlow TP, Culp LA (2002) Differential experimental micrometastasis to lung, liver, and bone with lacZ-tagged CWR22R prostate carcinoma cells. Clin Exp Metastasis 19:17–24

    Article  PubMed  Google Scholar 

  • Hotz HG et al (2003) Evaluation of vascular endothelial growth factor blockade and matrix metalloproteinase inhibition as a combination therapy for experimental human pancreatic cancer. J Gastrointest Surg 7:220–227 (discussion 227–228)

    Article  PubMed  Google Scholar 

  • Ji X et al (2009) Noninvasive visualization of retinoblastoma growth and metastasis via bioluminescence imaging. Invest Ophthalmol Vis Sci 50:5544–5551

    Article  PubMed  Google Scholar 

  • Jonkers J, Derksen PW (2007) Modeling metastatic breast cancer in mice. J Mammary Gland Biol Neoplasia 12:191–203

    Article  PubMed  Google Scholar 

  • Juppner H et al (1991) A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254:1024–1026

    Article  PubMed  CAS  Google Scholar 

  • Kang Y et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  PubMed  CAS  Google Scholar 

  • Khanna C et al (2000) An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin Exp Metastasis 18:261–271

    Article  PubMed  CAS  Google Scholar 

  • Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26:513–523

    Article  PubMed  CAS  Google Scholar 

  • Khatib AM et al (1999) Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Res 59:1356–1361

    PubMed  CAS  Google Scholar 

  • Kim IS, Baek SH (2010) Mouse models for breast cancer metastasis. Biochem Biophys Res Commun 394:443–447

    Article  PubMed  CAS  Google Scholar 

  • Klimek VM, Wolchok JD, Chapman PB, Houghton AN, Hwu WJ (2000) Systemic chemotherapy. Clin Plast Surg 27:451–461 (ix–x)

    PubMed  CAS  Google Scholar 

  • Kucia M et al (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23:879–894

    Article  PubMed  CAS  Google Scholar 

  • Kuperwasser C et al (2005) A mouse model of human breast cancer metastasis to human bone. Cancer Res 65:6130–6138

    Article  PubMed  CAS  Google Scholar 

  • Kuruppu D, Christophi C, Bertram JF, O’Brien PE (1998) Tamoxifen inhibits colorectal cancer metastases in the liver: a study in a murine model. J Gastroenterol Hepatol 13:521–527

    Article  PubMed  CAS  Google Scholar 

  • Lelekakis M et al (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17:163–170

    Article  PubMed  CAS  Google Scholar 

  • Libura J et al (2002) CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 100:2597–2606

    Article  PubMed  CAS  Google Scholar 

  • Logan PT et al (2008) Single-cell tumor dormancy model of uveal melanoma. Clin Exp Metastasis 25:509–516

    Article  PubMed  Google Scholar 

  • Lu X et al (2009) ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev 23:1882–1894

    Article  PubMed  CAS  Google Scholar 

  • Majka M et al (2000) Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis. Blood 96:4142–4151

    PubMed  CAS  Google Scholar 

  • Melnyk O, Zimmerman M, Kim KJ, Shuman M (1999) Neutralizing anti-vascular endothelial growth factor antibody inhibits further growth of established prostate cancer and metastases in a pre-clinical model. J Urol 161:960–963

    Article  PubMed  CAS  Google Scholar 

  • Minn AJ et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524

    Article  PubMed  CAS  Google Scholar 

  • Mittal A, Maxuitenko Y, Rinehart J, Waud WR, Thottassery J, Frost AR, Grizzle W, Li R, Qu Z (2005) A preclinical study of tamoxifen in combination with bevacizumab (Avastin) for the treatment of ER-positive breast cancer. AACR Meeting Abstracts: 254-b

    Google Scholar 

  • Ninomiya S et al (2009) Effect of bevacizumab, a humanized monoclonal antibody to vascular endothelial growth factor, on peritoneal metastasis of MNK-45P human gastric cancer in mice. J Surg Res 154:196–202

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Tamaoki N, Takakura A, Suemizu H (2008) Basic concept of development and practical application of animal models for human diseases. Curr Top Microbiol Immunol 324:1–24

    Google Scholar 

  • Nowak-Markwitz E et al (2010) Influence of tamoxifen on cisplatin-sensitivity and estrogen receptors expression in ovarian carcinoma cell lines. Ginekol Pol 81:183–187

    Google Scholar 

  • Otsuka S et al (2009) A bone metastasis model with osteolytic and osteoblastic properties of human lung cancer ACC-LC-319/bone2 in natural killer cell-depleted severe combined immunodeficient mice. Oncol Res 17:581–591

    Article  PubMed  Google Scholar 

  • Perk K, Pearson JW, Torgersen JA, Chirigos MA (1974) An animal model for meningeal leukemia. Int J Cancer 13:863–866

    Article  PubMed  CAS  Google Scholar 

  • Rose AA, Siegel PM (2006) Breast cancer-derived factors facilitate osteolytic bone metastasis. Bull Cancer 93:931–943

    PubMed  CAS  Google Scholar 

  • Rosol TJ, Tannehill-Gregg SH, LeRoy BE, Mandl S, Contag CH (2003) Animal models of bone metastasis. Cancer 97:748–757

    Article  PubMed  Google Scholar 

  • Rowe DH et al (2000) Anti-VEGF antibody suppresses primary tumor growth and metastasis in an experimental model of Wilms’ tumor. J Pediatr Surg 35:30–32 (discussion 32–33)

    Article  PubMed  CAS  Google Scholar 

  • Rusciano D, Lorenzoni P, Burger M (1994) Murine models of liver metastasis. Invas Metast 14:349–361

    Google Scholar 

  • Sacchi A, Calabresi F, Greco C, Zupi G (1981) Different metastatic potential of in vitro and in vivo lines selected from Lewis lung carcinoma: correlation with response to different bleomycin schedulings. Invas Metast 1:227–238

    CAS  Google Scholar 

  • Sanborn GE, Niederkorn JY, Gamel JW (1992) Efficacy of dacarbazine (DTIC) in preventing metastases arising from intraocular melanomas in mice. Graefes Arch Clin Exp Ophthalmol 230:192–196

    Article  PubMed  CAS  Google Scholar 

  • Shimizu N et al (1999) New animal model of glandular stomach carcinogenesis in Mongolian gerbils infected with Helicobacter pylori and treated with a chemical carcinogen. J Gastroenterol 34(Suppl 11):61–66

    PubMed  CAS  Google Scholar 

  • Shingu K et al (2003) Intratracheal macrophage-activating lipopeptide-2 reduces metastasis in the rat lung. Am J Respir Cell Mol Biol 28:316–321

    Article  PubMed  CAS  Google Scholar 

  • Soffer SZ et al (2001) Combination antiangiogenic therapy: increased efficacy in a murine model of Wilms tumor. J Pediatr Surg 36:1177–1181

    Article  PubMed  CAS  Google Scholar 

  • Song HT et al (2009) Rat model of metastatic breast cancer monitored by MRI at 3 T and bioluminescence imaging with histological correlation. J Transl Med 7:88

    Article  PubMed  Google Scholar 

  • Stapfer M, Hu J, Wei D, Groshen S, Beart RW Jr (2003) Establishment of a nude mouse model of hepatic metastasis for evaluation of targeted retroviral gene delivery. J Surg Oncol 82:121–130 (discussion 131)

    Article  PubMed  Google Scholar 

  • Tozeren A et al (1995) E-selectin-mediated dynamic interactions of breast- and colon-cancer cells with endothelial-cell monolayers. Int J Cancer 60:426–431

    Article  PubMed  CAS  Google Scholar 

  • Uchida E et al (2008) Experimental pancreatic cancer model using PGHAM-1 cells: characteristics and experimental therapeutic trials. J Nippon Med Sch 75:325–331

    Google Scholar 

  • United States National Institute of Health Year (2006) http://www.cancer.gov/cancertopics/factsheet/information/clinical-trials. Accessed July 2010

  • Valero T et al (2010) Combination of dacarbazine and dimethylfumarate efficiently reduces melanoma lymph node metastasis. J Invest Dermatol 130:1087–1094

    Article  PubMed  CAS  Google Scholar 

  • Wang J et al (2005) Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cell Signal 17:1578–1592

    Article  PubMed  CAS  Google Scholar 

  • Warren RS, Yuan H, Matli MR, Gillett NA, Ferrara N (1995) Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 95:1789–1797

    Article  PubMed  CAS  Google Scholar 

  • Wilcock BP, Peiffer RL Jr (1986) Morphology and behavior of primary ocular melanomas in 91 dogs. Vet Pathol 23:418–424

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Jager MJ, Grossniklaus HE (2010) Bevacizumab suppression of establishment of micrometastases in experimental ocular melanoma. Invest Ophthalmol Vis Sci 51:2835–2842

    Article  PubMed  Google Scholar 

  • Yang M et al (1999) Genetically fluorescent melanoma bone and organ metastasis models. Clin Cancer Res 5:3549–3559

    PubMed  CAS  Google Scholar 

  • Yin JJ et al (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103:197–206

    Article  PubMed  CAS  Google Scholar 

  • Yoneda T (1997) Arterial microvascularization and breast cancer colonization in bone. Histol Histopathol 12:1145–1149

    PubMed  CAS  Google Scholar 

  • Yoneda T (1998) Cellular and molecular mechanisms of breast and prostate cancer metastasis to bone. Eur J Cancer 34:240–245

    Article  PubMed  CAS  Google Scholar 

  • Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16:1486–1495

    Article  PubMed  CAS  Google Scholar 

  • Yu Y et al (2004) Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 10:175–181

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Logan M.Sc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Logan, P.T. (2013). Haematogenous Models of Metastases. In: Burnier, J., Burnier, Jr., M. (eds) Experimental and Clinical Metastasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3685-0_15

Download citation

Publish with us

Policies and ethics