Skip to main content

Functionally Graded Materials in Engineering

  • Chapter
  • First Online:
Structural Interfaces and Attachments in Biology

Abstract

Functionally graded materials (FGM) are composite materials formed of two or more constituent phases with a continuously variable distribution. The variations in the phase distribution may be reflected in their volume or weight fraction, orientation, and shape. In the majority of studies of FGM in engineering, the authors aim to achieve their goals with only one of these factors, the volume fraction being a typical variable. The variation of the phase volume fractions may be exclusively through the thickness of the structure and/or in any other direction, such as in-surface coordinates of a plate or shell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suresh S, Mortensen A (1998) Fundamentals of functionally graded materials: processing and thermomechanical behaviour of graded metals and metal-ceramic composites. IOM Communications Ltd, London

    Google Scholar 

  2. Miyamoto Y (1999) Functionally graded materials: design, processing, and applications. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  3. Birman V, Byrd LW (2007) Modeling and analysis of functionally graded materials and structures. Appl Mech Rev 60:195–216

    Article  Google Scholar 

  4. Paulino GH (2008) Multiscale and functionally graded materials. In: Proceedings of the International Conference FGM IX, Oahu Island, Hawaii, 15–18 Oct 2006. AIP conference proceedings, vol 973. American Institute of Physics, Melville

    Google Scholar 

  5. Kawasaki A, Niino M, Kumakawa A (2008) Multiscale, multifunctional and functionally graded materials: selected, peer reviewed papers from the 10th International Symposium on MM & FGMs, 22nd–25th Sept 2008, Sendai, Japan. Materials science forum, vol 631–632. Trans Tech, Stafa-Zuriich, Switzerland; United Kingdom; Enfield

    Google Scholar 

  6. Mishina H, Inumaru Y, Kaitoku K (2008) Fabrication of ZrO2/AlSl316L functionally graded materials for joint prosthesis. Mater Sci Eng A 475:141–147

    Article  Google Scholar 

  7. Qian X, Dutta D (2004) Feature-based design for heterogeneous objects. Comput Aided Design 36(12):1263–1278

    Article  Google Scholar 

  8. Kirugulige MS, Kitey R, Tipput HV (2005) Dynamic fracture behavior of model sandwich structures with functionally graded core: a feasibility study. Compos Sci Technol 65:1052–1068

    Article  Google Scholar 

  9. Ray A, Mondal S, Das S, Ramachandrarao P (2005) Bamboo—a functionally graded composite-correlation between microstructure and mechanical strength. J Mater Sci 40(19):5249–5253

    Article  Google Scholar 

  10. Willert-Porada M (2010) Design and fabrication strategy in the world of functional gradation. Int J Mater Prod Technol 39(1–2):59–71

    Article  Google Scholar 

  11. Genin GM, Kent A, Birman V, Wopenka B, Pasteris JD, Marquez PJ, Thomopoulos S (2009) Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys J 97(4):976–985

    Article  Google Scholar 

  12. Paulino GH, Silva ECN, Le CH (2009) Optimum design of periodic functionally graded composites with prescribed properties. Struct Multidiscip Optim 38(5):469–489

    Article  MathSciNet  Google Scholar 

  13. Torquato S (2001) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Google Scholar 

  14. Markov K, Preziosi L (2000) Heterogeneous media: micromechanics modeling methods and simulations. Birkhauser, Boston

    MATH  Google Scholar 

  15. Pindera M-J, Khatam H, Drago AS, Bansal Y (2009) Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches. Compos Part B 40:349–378

    Article  Google Scholar 

  16. Ostoja-Starzewski M (2008) Microstructural randomness and scaling in mechanics of materials. Chapman & Hall/CRC, Boca Raton, FL

    MATH  Google Scholar 

  17. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222

    Article  Google Scholar 

  18. Kanaun SK, Jeulin D (2001) Elastic properties of hybrid composites by the effective field approach. J Mech Phys Solids 49:2339–2367

    Article  MATH  Google Scholar 

  19. Jones RM (1999) Mechanics of composite materials, 2nd edn. Taylor & Francis, Inc., Philadelphia

    Google Scholar 

  20. Fung YC (1994) A first course in continuum mechanics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  21. Silva ECN, Walters MC, Paulino GH (2008) Modeling bamboo as a functionally graded material. In: AIP conference proceedings, pp 754–759 Melville, New York

    Google Scholar 

  22. Rahman SCA (2007) A stochastic micromechanical model for elastic properties of functionally graded materials. Mech Mater 39:548–563

    Article  Google Scholar 

  23. Cavalcante MAA, Marques SPC, Pindera M-J (2007) Parametric formulation of the finite-volume theory for functionally graded materials—part 1: analysis. J Appl Mech 74(5):935–945

    Article  Google Scholar 

  24. Cavalcante MAA, Marques SPC, Pindera M-J (2007) Parametric formulation of the finite-volume theory for functionally graded materials—part II: numerical results. J Appl Mech 74(5):946–957

    Article  Google Scholar 

  25. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248

    Article  MathSciNet  MATH  Google Scholar 

  26. Gunes R, Reddy JN (2008) Nonlinear analysis of functionally graded circular plates under different loads and boundary conditions. Int J Struct Stab Dyn 8(1):131–159

    Article  Google Scholar 

  27. Allahverdizadeh A, Naei MH, Nikkhah Bahrami M (2008) Nonlinear free and forced vibration analysis of thin circular functionally graded plates. J Sound Vib 310(4–5):966–984

    Article  Google Scholar 

  28. Li XY, Ding HJ, Chen WQ (2008) Axisymmetric elasticity solutions for a uniformly loaded annular plate of transversely isotropic functionally graded materials. Acta Mech 196(3–4):139–159

    Article  MATH  Google Scholar 

  29. Larson RA, Palazotto AN (2009) Property estimation in FGM plates subject to low-velocity impact loading. J Mech Mater Struct 4(7–8):1429–1451

    Article  Google Scholar 

  30. Pai PF, Palazotto AN (2007) Two-dimensional sublamination theory for analysis of functionally graded plates. J Sound Vib 308(1–2):164–189

    Google Scholar 

  31. Chen H, Yu W (2010) Asymptotical construction of an efficient high-fidelity model for multilayer functionally graded plates. AIAA J 48(6):1171–1183

    Article  Google Scholar 

  32. Lu CF, Chen WQ, Xu RQ, Lim CW (2008) Semi-analytical elasticity solutions for bi-directional functionally graded beams. Int J Solids Struct 45(1):258–275

    Article  Google Scholar 

  33. Zenkour AM, Allam MNM, Sobhy M (2010) Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak’s elastic foundation. Acta Mech 212(3–4):233–252

    Article  MATH  Google Scholar 

  34. Brischetto S (2009) Classical and mixed advanced models for sandwich plates embedding functionally graded cores. J Mech Mater Struct 4(1):13–33

    Article  Google Scholar 

  35. Li Q, Iu VP, Kou KP (2008) Three-dimensional vibration analysis of functionally graded material sandwich plates. J Sound Vib 311(1–2):498–515

    Article  Google Scholar 

  36. Ke LL, Wang Y-S (2011) Size effect of dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos Struct 93:342–350

    Article  Google Scholar 

  37. Pradyumna S, Bandyopadhyay JN (2008) Dynamic instability of functionally graded shells using higher-order theory. J Eng Mech 136(5):551–561

    Article  Google Scholar 

  38. Asgari M, Akhlaghi M, Hosseini SM (2009) Dynamic analysis of two-dimensional functionally graded thick hollow cylinder with finite length under impact loading. Acta Mech 208(3–4):163–180

    Article  MATH  Google Scholar 

  39. Huang H, Han Q (2008) Buckling of imperfect functionally graded cylindrical shells under axial compression. Eur J Mech A-Solid 27(6):1026–1036

    Article  MathSciNet  MATH  Google Scholar 

  40. Li XF, Peng XL, Kang YA (2009) Pressurized hollow spherical vessels with arbitrary radial nonhomogeneity. AIAA J 47(9):2262–2265

    Article  Google Scholar 

  41. Batra RC (2008) Optimal design of functionally graded incompressible linear elastic cylinders and spheres. AIAA J 46(8):2050–2057

    Article  Google Scholar 

  42. Sofiyev AH, Kuruoglu N, Turkmen M (2009) Buckling of FGM hybrid truncated conical shells subjected to hydrostatic pressure. Thin Wall Struct 47(1):61–72

    Article  Google Scholar 

  43. Pradyumna S, Bandyopadhyay JN (2008) Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation. J Sound Vib 318(1–2):176–192

    Article  Google Scholar 

  44. Arcininega RA, Reddy JN (2007) Large deformation analysis of functionally graded shells. Int J Solids Struct 44(6):2036–2052

    Article  Google Scholar 

  45. Sheng GG, Wang X (2008) Thermomechanical vibration analysis of a functionally graded shell with flowing fluid. Eur J Mech A-Solid 27(6):1075–1087

    Article  MathSciNet  MATH  Google Scholar 

  46. Birman V, Byrd LW (2007) Vibrations of damaged cantilevered beams manufactured from functionally graded materials. AIAA J 45(11):2747–2757

    Article  Google Scholar 

  47. Librescu L, Maalawi KY (2007) Material grading for improved aeroelastic stability in composite wings. J Mech Mater Struct 2(7):1381–1394

    Article  Google Scholar 

  48. Librescu L, Oh S-Y, Song O (2005) Thin-walled beams made of functionally graded materials and operating in a high temperature environment. J Therm Stress 28(6–7):649–712

    Article  Google Scholar 

  49. Ibrahim HH, Yoo HH, Lee KS (2009) Supersonic flutter of functionally graded panels subject to acoustic and thermal loads. J Aircr 46(2):593–600

    Article  Google Scholar 

  50. Kashtalyan M, Menshykova M (2008) Three-dimensional analysis of a functionally graded coating/substrate system of finite thickness. Philos Transact R Soc A Math Phys Eng Sci 366(1871):1821–1826

    Article  MATH  Google Scholar 

  51. Panda S, Ray MC (2009) Control of nonlinear vibrations of functionally graded plates using 1–3 piezoelectric composite. AIAA J 47(6):1421–1434

    Article  Google Scholar 

  52. Ke LL, Wang YS, Yang J, Kitipornchai S (2010) Sliding frictional contact analysis of functionally graded piezoelectric layered half-plane. Acta Mech 209(3–4):249–268

    Article  MATH  Google Scholar 

  53. Babaei MH, Chen ZT (2008) Analytical solution for the electromechanical behavior of a rotating functionally graded piezoelectric hollow shaft. Arch Appl Mech 78(7):489–500

    Article  MATH  Google Scholar 

  54. Sladek J, Sladek V, Solek P, Saez A (2008) Dynamic 3D axisymmetric problems in continuously non-homogeneous piezoelectric solids. Int J Solids Struct 45(16):4523–4542

    Article  MATH  Google Scholar 

  55. Tsai YH, Wu CP (2008) Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. Int J Eng Sci 46(9):843–857

    Article  MATH  Google Scholar 

  56. Wu C-P, Tsai Y-H (2007) Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int J Eng Sci 45(9):744–769

    Article  Google Scholar 

  57. Birman V (2010) Properties and response of composite material with spheroidal superelastic shape memory alloy inclusions subject to three-dimensional stress state. J Phys D: Appl Phys 43(22)

    Google Scholar 

  58. Qian ZH, Jin F, Lu T, Kishimoto K (2009) Transverse surface waves in an FGM layered structure. Acta Mech 207(3–4):183–193

    Article  MATH  Google Scholar 

  59. Hasheminejad SM, Rajabi M (2007) Acoustic resonance scattering from a submerged functionally graded cylindrical shell. J Sound Vib 302(1–2):208–228

    Article  Google Scholar 

  60. Shuvalov AL, Le Clezio E, Feuillard G (2008) The state-vector formalism and the Peano-series solution for modelling guided waves in functionally graded anisotropic piezoelectric plates. Int J Eng Sci 46(9):929–947

    Article  MATH  Google Scholar 

  61. Du J, Xian K, Yong YK, Wang J (2010) SH-SAW propagation in layered functionally graded piezoelectric material structures loaded with viscous liquid. Acta Mech 212(3–4):271–281

    Article  MATH  Google Scholar 

  62. Jiangong Y, Bin W, Guoqiang C (2009) Wave characteristics in functionally graded piezoelectric hollow cylinders. Arch Appl Mech 79(9):807–824

    Article  MATH  Google Scholar 

  63. Cao X, Jin F, Wang Z (2008) On dispersion relations of Rayleigh waves in a functionally graded piezoelectric material (FGPM) half-space. Acta Mech 200(3–4):247–261

    Article  MATH  Google Scholar 

  64. Liu N, Yang J, Qian ZH, Hirose S (2010) Interface waves in functionally graded piezoelectric materials. Int J Eng Sci 48(2):151–159

    Article  MathSciNet  MATH  Google Scholar 

  65. Li X, Liu J (2009) Scattering of the SH wave from a crack in a piezoelectric substrate bonded to a half-space of functionally graded materials. Acta Mech 208(3–4):299–308

    Article  MATH  Google Scholar 

  66. Fang XQ (2008) Multiple scattering of electro-elastic waves from a buried cavity in a functionally graded piezoelectric material layer. Int J Solids Struct 45(22–23):5716–5729

    Article  MATH  Google Scholar 

  67. Bin W, Jiangong Y, Cunfu H (2008) Wave propagation in non-homogeneous magneto-electro-elastic plates. J Sound Vib 317(1–2):250–264

    Article  Google Scholar 

  68. Nie GJ, Zhong Z, Batra RC (2011) Material tailoring for functionally graded hollow cylinders and spheres. Compos Sci Technol 71(5):666–673

    Article  Google Scholar 

  69. Bobaru F (2007) Designing optimal volume fractions for functionally graded materials with temperature dependent material properties. J Appl Mech 74(5):861–875

    Article  Google Scholar 

  70. Zhong Z, Cheng Z (2008) Fracture analysis of a functionally graded strip with arbitrary distributed material properties. Int J Solids Struct 45(13):3711–3725

    Article  MATH  Google Scholar 

  71. Li YD, Lee KY (2009) Effects of the weak/micro-discontinuity of interface on the fracture behavior of a functionally graded coating with an inclined crack. Arch Appl Mech 79(9):779–791

    Article  MATH  Google Scholar 

  72. Tohgo K, Iizuka M, Araki H, Shimamura Y (2008) Influence of microstructure on fracture toughness distribution in ceramic-metal functionally graded materials. Eng Fract Mech 75(15):4529–4541

    Article  Google Scholar 

  73. Leng SE (2010) Functional graded material with nano-structured coating for protection. Int J Mater Prod Technol 39(1–2):136–147

    Google Scholar 

  74. Li YD, Lee KY (2010) Interfacial fracture analysis of a graded piezoelectric layer on a substrate with finite dimension. Arch Appl Mech 80(9):1007–1016

    Article  Google Scholar 

  75. Yan Z, Jiang LY (2010) Interaction of parallel dielectric cracks in functionally graded piezoelectric materials. Acta Mech 211(3–4):251–269

    Article  MATH  Google Scholar 

  76. Chen YJ, Chue CH (2010) Mode III fracture problem of a cracked FGPM surface layer bonded to a cracked FGPM substrate. Arch Appl Mech 80(3):285–303

    Article  Google Scholar 

  77. Dag S, Yildirum B, Sarikaya D (2007) Mixed-mode fracture analysis of orthotropic functionally graded materials under mechancial and thermal loads. Int J Solids Struct 44:7816–7840

    Article  MATH  Google Scholar 

  78. Ueda S, Iogawa T (2010) Two parallel penny-shaped or annular cracks in a functionally graded piezoelectric strip under electric loading. Acta Mech 210(1–2):57–70

    Article  MATH  Google Scholar 

  79. Ding SH, Li X (2008) Periodic cracks in a functionally graded piezoelectric layer bonded to a piezoelectric half-plane. Theor Appl Fract Mech 49(3):313–320

    Article  Google Scholar 

  80. Peng XL, Li XF (2009) Transient response of the crack-tip field in a magnetoelectroelastic half-space with a functionally graded coating under impacts. Arch Appl Mech 79(12):1099–1113

    Article  MATH  Google Scholar 

  81. Lee KH (2009) Analysis of a transiently propagating crack in functionally graded materials under mode I and II. Int J Eng Sci 47(9):852–865

    Article  MATH  Google Scholar 

  82. Feng W, Su R (2007) Dynamic fracture behaviors of cracks in a functionally graded magneto-electro-elastic plate. Eur J Mech A-Solid 26(2):363–379

    Article  MATH  Google Scholar 

  83. Chakraborty A, Rahman S (2008) Stochastic multiscale models for fracture analysis of functionally graded materials. Eng Fract Mech 75(8):2062–2086

    Article  Google Scholar 

  84. Kubair DV, Bhanu-Chandar B (2008) Stress concentration factor due to a circular hole in functionally graded panels under uniaxial tension. Int J Mech Sci 50(4):732–742

    Article  Google Scholar 

  85. Lee D, Barber JR, Thouless MD (2009) Indentation of an elastic half space with material properties varying with depth. Int J Eng Sci 47(11–12):1274–1283

    Article  MathSciNet  MATH  Google Scholar 

  86. Choi HJ (2009) On the plane contact problem of a functionally graded elastic layer loaded by a frictional sliding flat punch. J Mech Sci Technol 23(10):2703–2713

    Article  Google Scholar 

  87. Hu Y, Blouin VY, Fadel GM (2005) Design for manufacturing of 3D heterogeneous objects with processing time consideration. ASME Conf Proc: Design for Manufacturing and Life Cycle Conference, Vol. 4b:523–532

    Google Scholar 

  88. Chiu WK, Yu KM (2008) Multi-criteria decision-making determination of material gradient for functionally graded material objects fabrication. Proc IME B J Eng Manufact 222(2):293–307

    Article  Google Scholar 

  89. Erisken C, Kalyon DM, Wang H (2010) Viscoelastic and biomechanical properties of osteochondral tissue constructs generated from graded polycaprolactone and beta-tricalcium phosphate composites. J Biomech Eng 132(9):art no. 091013

    Article  Google Scholar 

  90. Gorke UJ, Gunther H, Nagel T, Wimmer MA (2010) A large strain material model for soft tissues with functionally graded properties. J Biomech Eng 132(7)

    Google Scholar 

  91. Liu Y, Birman V, Chen C, Thomopoulos S, Genin GM (2011) Mechanisms of bimaterial attachment at the interface of tendon to bone. J Eng Mater Technol 133(1):art no. 011006

    Article  Google Scholar 

  92. Thomopoulos S, Marquez JP, Weinberger B, Birman V, Genin GM (2006) Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J Biomech 39(10):1842–1851

    Article  Google Scholar 

  93. Hedia HS, Shabara MA, El-Midany TT, Fouda N (2006) Improved design of cementless hip stems using two-dimensional functionally graded materials. J Biomed Mater Res B Appl Biomater 79(1):42–49

    Google Scholar 

  94. Hedia HS (2007) Effect of coating thickness and its material on the stress distribution for dental implants. J Med Eng Technol 31(4):280–287

    Article  Google Scholar 

  95. Lin D, Li Q, Li W, Swain M (2009) Bone remodeling induced by dental implants of functionally graded materials. J Biomed Mater Res B Appl Biomater 92(2):430–438

    Google Scholar 

  96. Abaqus/CAE User’s Manual 6.10 (2010) Dassault Systemes Simulia Corp., Providence, RI, USA

    Google Scholar 

  97. Eldred MS et al (2008) DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis. vol Version 4.2 User’s Manual. Sandia National Laboratories, Livermore, CA 94551

    Google Scholar 

  98. Vinson JR (1999) The behavior of sandwich structures of isotropic and composite materials. Technomic, Lancaster, PA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Birman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birman, V., Keil, T., Hosder, S. (2013). Functionally Graded Materials in Engineering. In: Thomopoulos, S., Birman, V., Genin, G. (eds) Structural Interfaces and Attachments in Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3317-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3317-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3316-3

  • Online ISBN: 978-1-4614-3317-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics