Skip to main content

Digital Concept Mapping for Formative Assessment

  • Chapter
  • First Online:
Digital Knowledge Maps in Education

Abstract

Concept maps are widely used as assessment tool in research projects but do not seem to be often used for diagnostic purposes in school practice. Their evaluation is regarded to be too time consuming and of lower reliability compared to written tests. Therefore, different computer-based approaches are reviewed which have the opportunity to improve the reliability and to reduce the effort of evaluation. Their options for formative assessment on an individual and class level are discussed with the intention to foster achievement through diagnostic feedback. Finally, ideas how to enhance the available software solutions are derived. For this chapter especially research on digital concept mapping published in the German language has been reviewed in order to make this body of knowledge accessible to the international community

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acton, W., Johnson, P., & Goldsmith, T. (1994). Structural knowledge assessment: comparison of referent structures. Journal of Educational Psychology, 86(2), 303–311.

    Article  Google Scholar 

  • Anderson, L., & Krathwohl, D. (2001). A taxonomy for learning, teaching and assessing – a revision of Bloom’s taxonomy of educational objectives. New York: Longman.

    Google Scholar 

  • Ballstaedt, S.-P., Mandl, H., Schnotz, W., & Tergan, S.-O. (1989). Texte verstehen – Texte gestalten. München: Urban & Schwarzenberg.

    Google Scholar 

  • Behrendt, H., Dahncke, H., & Reiska, P. (2000). Einsatz und computergestützte Auswertung von Concept Maps mit modalen Netzen und Bereichsdiagrammen. In H. Fischler & J. Peuckert (Eds.), Concept Mapping in fachdidaktischen Forschungsprojekten der Physik und Chemie (pp. 117–146). Berlin: Logos.

    Google Scholar 

  • Bonato, M. (1990). Wissensstrukturierung mittels Struktur-Lege-Techniken: Eine graphentheoretische Analyse von Wissensnetzen. Frankfurt: Lang.

    Google Scholar 

  • Borgatti, S. P., & Everett, M. G. (2005). A graph-theoretic perspective on centrality. Social Networks, 28(4), 1–19.

    Google Scholar 

  • Brandes, U., & Erlebach, T. (Eds.). (2005). Network analysis. New York: Springer.

    Google Scholar 

  • Costa, L. d. F., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1), 167–242.

    Article  Google Scholar 

  • Dansereau, D. F., Collins, K. W., McDonald, B. A., Holley, C. F., Garland, J., Diekhoff, G., et al. (1979). Development and evaluation of a learning strategy training program. Journal of Educational Psychology, 71, 64–73.

    Article  Google Scholar 

  • Eckert, A. (2000). Die Netzwerk-Elaborierungs-Technik (NET) – Ein computerunterstütztes Verfahren zur Diagnose komplexer Wissensstrukturen. In H. Mandl & F. Fischer (Eds.), Wissen sichtbar machen – Wissensmanagement mit Mapping-Techniken (pp. 138–157). Göttingen: Hofgrefe.

    Google Scholar 

  • Fischler, H., & Peuckert, J. (2000). Concept Mapping in Forschungszusammenhängen. In H. Fischler & J. Peuckert (Eds.), Concept Mapping in fachdidaktischen Forschungsprojekten der Physik und Chemie (pp. 1–22). Berlin: Logos.

    Google Scholar 

  • Friege, G., & Lind, G. (2000). Begriffsnetze und Expertise. In H. Fischler & J. Peuckert (Eds.), Concept Mapping in fachdidaktischen Forschungsprojekten der Physik und Chemie (pp. 147–178). Berlin: Logos.

    Google Scholar 

  • Fürstenau, B., Trojahner, I., & Oldenbürger, H.-A. (2009). Ãœbereinstimmungen und Unterschiede von semantischen Netzwerken als Repräsentationen komplexen Wissens. In D. Münk, T. Deißinger, & R. Tenberg (Eds.), Forschungserträge aus der Berufs- und Wirtschaftspädagogik (pp. S. 117–129). Opladen u. Farmington Hills: Barbara Budrich.

    Google Scholar 

  • Fürstenau, B., & Trojahner, I. (2005). Prototypische Netzwerke als Ergebnis struktureller Inhaltsanalysen. In P. Gonon, F. Klauser, R. Nickolaus, & R. Huisinga (Eds.), Kompetenz, Kognition und neue Konzepte der beruflichen Bildung (S) (pp. 191–202). Opladen: Leske + Budrich.

    Chapter  Google Scholar 

  • Hattie, J. A. C. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. London: Routledge.

    Google Scholar 

  • Helmke, A. (2009). Unterrichtsqualität und Lehrerprofessionalität – Diagnose, Evaluation und Verbesserung des Unterrichts. Seelze-Velber: Kallmeyer.

    Google Scholar 

  • Hoede, C. (1978). A new status score for actors on a social network. Twente University of Technology, Dept. of applied Mathematics (Internal reports).

    Google Scholar 

  • Ifenthaler, D. (2009). Model-based feedback for improving expertise and expert performance. Technology, Instruction, Cognition and Learning, 7(2), 83–101.

    Google Scholar 

  • Ifenthaler, D. (2010a). Relational, structural, and semantic analysis of graphical representations and concept maps. Educational Technology Research and Development, 58, 81–97. doi:10.1007/s11423-008-9087-4.

    Article  Google Scholar 

  • Ifenthaler, D. (2010b). Scope of graphical indices in educational diagnostics. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 213–234). New York: Springer.

    Chapter  Google Scholar 

  • Ifenthaler, D., Masduki, I., & Seel, N. M. (2011). The mystery of cognitive structure and how we can detect it. Tracking the development of cognitive structures over time. Instructional Science, 39(1), 41–61. doi:10.1007/s11251-009-9097-6.

    Google Scholar 

  • Kinchin, I. M. (2000). Concept mapping in biology. Journal of Biological Education, 34(2), 61–68.

    Article  Google Scholar 

  • Lambiotte, J. G., Dansereau, D. F., Cross, D. R., & Reynolds, S. B. (1989). Multirelational semantic maps. Educational Psychology Review, 1(4), 331–367.

    Article  Google Scholar 

  • Ley, S. L., Krabbe, H., & Fischer, H. E. (2012). Convergent validity: Concept maps and competence test for students’ diagnosis in physics. Proceedings of the fifth international conference on concept mapping, Vol. 1, (pp. 149–155). Valetta, Malta. Retrieved 15 October, 2012, from http://cmc.ihmc.us/cmc2012papers/cmc2012-p30.pdf

  • Lüthjohann, F., & Parchmann, I. (2011). Konzeptverständnis ermittel. Concept Mapping als Diagnoseinstrument im NaWi-Unterricht an Regional- und Gemeinschaftsschulen. Naturwissenschaften im Unterricht Chemie, 22(124/125), 76–81.

    Google Scholar 

  • Novak, J., & Gowin, B. (1984). Learning how to learn. New York: Cambridge University Press.

    Book  Google Scholar 

  • MaNet (2012). Retrieved 15 October, 2012, from http://www.marescom.net

  • McClure, J., Sonak, B., & Suen, H. (1999). Concept map assessment of classroom learning: Reliability, validity and logistical practicality. Journal of Research in Science Teaching, 36(4), 475–492.

    Article  Google Scholar 

  • Peuckert, J., & Fischler, H. (2000). Concept Maps als Diagnose- und Auswertungsinstrument in einer Studie zur Stabilität und Ausprägung von Schülervorstellungen. In H. Fischler & J. Peuckert (Eds.), Concept Mapping in fachdidaktischen Forschungsprojekten der Physik und Chemie (pp. 91–116). Berlin: Logos.

    Google Scholar 

  • Piaget, J. (1976). Die Äquilibration der kognitiven Strukturen. Stuttgart: Klett.

    Google Scholar 

  • Pirnay-Dummer, P., & Ifenthaler, D. (2010). Automated knowledge visualization and assessment. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 77–115). New York: Springer.

    Chapter  Google Scholar 

  • Rice, D. C., Ryan, J. M., & Samson, S. M. (1998). Using concept maps to assess student learning in the science classroom: must different methods compete? Journal of Research in Science Teaching, 35(10), 1103–1127.

    Article  Google Scholar 

  • Royer, R., & Royer, J. (2004). Comparing hand drawn and computer generated concept mapping. Journal of Computers in Mathematics and Science Teaching, 23(1), 67–81.

    Google Scholar 

  • Ruiz-Primo, M. (2000). On the use of concept maps as an assessment tool in science: What we have learned so far. Revista Electrónica de Investigación Educativa (Online Journal), 2(1), 29–52. Retrieved 15 October, 2012, from dialnet.unirioja.es/descarga/articulo/244017.pdf

  • Ruiz-Primo, M., Schultz, S., Li, M., & Shavelson, R. (2001). Comparison of the reliability and validity of scores from two concept-mapping techniques. Journal of Research in Science Teaching, 38(2), 260–278.

    Article  Google Scholar 

  • Ruiz-Primo, M., & Shavelson, R. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33(6), 569–600.

    Article  Google Scholar 

  • Schanze, S. & Grüß-Niehaus, T. (2008). Supporting comprehension in chemistry education - The effect of computer generated and progressive concept mapping. Proceedings of the third international conference on concept mapping, Vol. 2, (pp. 595–602). Tallin, Estonia & Helsinki, Finland. Retrieved 15 October, 2012, from http://cmc.ihmc.us/cmc2008papers/cmc2008-p303.pdf

  • Schecker, H., & Klieme, E. (2000). Erfassung physikalischer Kompetenz durch Concept-Mapping-Verfahren Concept. In H. Fischler & J. Peuckert (Eds.), Concept Mapping in fachdidaktischen Forschungsprojekten der Physik und Chemie (pp. 23–56). Berlin: Logos.

    Google Scholar 

  • Stracke, I. (2004). Einsatz computerbasierter Concept Maps zur Wissensdiagnose in der Chemie. Münster: Waxmann.

    Google Scholar 

  • Strautmane, M. (2012). Concept map-based knowledge-assessment tasks and their scoring criteria: An overview. Proceedings of the fifth international conference on concept mapping, Vol. 1, (pp. 80–88) Valetta, Malta. Retrieved 15 October, 2012, from http://cmc.ihmc.us/cmc2012papers/cmc2012-p113.pdf

  • Tversky, A. (1977). Features of similarity. Psychological review, 84(4), 327–253.

    Article  Google Scholar 

  • Weber, S. (1994). Vorwissen in der betriebswirtschaftlichen Ausbildung. Wiesbaden: Deutscher Universitätsverlag.

    Book  Google Scholar 

  • Wikipedia (2012). List of concept- and mind-mapping software. Retrieved 15 October, 2012, from http://en.wikipedia.org/wiki/List_of_concept-_and_mind-mapping_software

Download references

Acknowledgements

I thank Dirk Ifenthaler from Open Universities Australia for the creation of modal maps and the calculation of the semantic matching indices with his software AKOVIA. Also, I would like to acknowledge Siv Ling Ley and Hans Fischer from the University of Duisburg-Essen, Germany, for their collaborative work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Krabbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krabbe, H. (2014). Digital Concept Mapping for Formative Assessment. In: Ifenthaler, D., Hanewald, R. (eds) Digital Knowledge Maps in Education. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3178-7_15

Download citation

Publish with us

Policies and ethics