Skip to main content

FPGA-Accelerated Molecular Dynamics

  • Chapter
  • First Online:
High-Performance Computing Using FPGAs

Abstract

Molecular dynamics simulation (MD) is one of the most important applications in computational science and engineering. Despite its widespread use, there exists a many order-of-magnitude gap between the demand and the performance currently achieved. Acceleration of MD has therefore received much attention. In this chapter, we discuss the progress made in accelerating MD using Field-Programmable Gate Arrays (FPGAs). We first introduce the algorithms and computational methods used in MD and describe the general issues in accelerating MD. In the core of this chapter, we show how to design an efficient force computation pipeline for the range-limited force computation, the most time-consuming part of MD and the most mature topic in FPGA acceleration of MD. We discuss computational techniques and simulation quality and present efficient filtering and mapping schemes. We also discuss overall design, host–accelerator interaction and other board-level issues. We conclude with future challenges and the potential of production FPGA-accelerated MD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.A. Adcock, J.A. McCammon, Molecular dynamics: survey of methods for simulating the activity of proteins. Chem. Rev. 106(5), 1589–1615 (2006)

    Article  Google Scholar 

  2. J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227(10), 5342–5359 (2008)

    Article  MATH  Google Scholar 

  3. R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A. Trew, A. McCormick, G. Smart, R. Smart, A. Cantle, R. Chamberlain, G. Genest, Maxwell - a 64 FPGA supercomputer, in Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS) (2007), IEEE Computer Society, Washington, DC, USA, pp. 287–294

    Google Scholar 

  4. K.J. Bowers, E. Chow, H. Xu, R.O. Dror, M.P. Eastwood, B.A. Gregersen, J.L. Klepeis, I. Kolossvary, M.A. Moraes, F.D. Sacerdoti, J.K. Salmon, Y. Shan, D.E. Shaw, Scalable algorithms for molecular dynamics simulations on commodity clusters, in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC) (2006), ACM New York, NY, USA, pp. 84:1–84:13

    Google Scholar 

  5. B.R. Brooks, C.L. Brooks III, A.D. Mackerell Jr., L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York, M. Karplus, CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10, Sp. Iss. SI), 1545–1614 (2009)

    Google Scholar 

  6. D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr., A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)

    Article  Google Scholar 

  7. M. Chiu, M.C. Herbordt, Efficient particle-pair filtering for acceleration of molecular dynamics simulation, in International Conference on Field Programmable Logic and Applications (FPL) (2009), ACM New York, NY, USA, pp. 345–352

    Google Scholar 

  8. M. Chiu, M.C. Herbordt, Molecular dynamics simulations on high-performance reconfigurable computing systems. ACM Trans. Reconfigurable Tech. Syst. (TRETS) 3(4), 23:1–23:37 (2010)

    Google Scholar 

  9. M. Chiu, M.A. Khan, M.C. Herbordt, Efficient calculation of pairwise nonbonded forces, in The 19th Annual International IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2011), IEEE Computer Society Washington, DC, USA, pp. 73–76

    Google Scholar 

  10. S. Chiu, Accelerating molecular dynamics simulations with high-performance reconfigurable systems, PhD dissertation, Boston University, USA, 2011

    Google Scholar 

  11. T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N.log (N) method for Ewald sums in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)

    Google Scholar 

  12. W.A. Eaton, V. Muñoz, P.A. Thompson, C.K. Chan, J. Hofrichter, Submillisecond kinetics of protein folding. Curr. Opin. Struct. Biol. 7(1), 10–14 (1997)

    Article  Google Scholar 

  13. R.D. Engle, R.D. Skeel, M. Drees, Monitoring energy drift with shadow Hamiltonians. J. Comput. Phys. 206(2), 432–452 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. P.L. Freddolino, A.S. Arkhipov, S.B. Larson, A. McPherson, K. Schulten, Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14(3), 437–449 (2006)

    Article  Google Scholar 

  15. Gidel, Gidel website (2009), http://www.gidel.com. Accessed 17 April 2012

  16. GROMACS, GROMACS installation instructions for GPUs (2012), http://www.gromacs.org/Downloads/Installation_Instructions/GPUs. Accessed 17 April 2012

  17. Y. Gu, M.C. Herbordt, FPGA-based multigrid computation for molecular dynamics simulations, in 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2007), pp. 117–126

    Google Scholar 

  18. Y. Gu, T. Vancourt, M.C. Herbordt, Explicit design of FPGA-based coprocessors for short-range force computations in molecular dynamics simulations. Parallel Comput. 34(4–5), 261–277 (2008)

    Article  Google Scholar 

  19. D.J. Hardy, NAMD-Lite (2007), http://www.ks.uiuc.edu/Development/MDTools/namdlite/. University of Illinois at Urbana-Champaign. Accessed 17 April 2012

  20. M. Herbordt, M. Khan, Communication requirements of fpga-centric molecular dynamics, in Proceedings of the Symposium on Application Accelerators for High Performance Computing (2012)

    Google Scholar 

  21. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theor. Comput. 4(3), 435–447 (2008)

    Article  Google Scholar 

  22. R. Hockney, S. Goel, J. Eastwood, Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14(2), 148–158 (1974)

    Article  Google Scholar 

  23. L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten, NAMD2: Greater scalability for parallel molecular dynamics. J. Comput. Phys. 151, 283–312 (1999)

    Article  MATH  Google Scholar 

  24. S. Kasap, K. Benkrid, A high performance implementation for molecular dynamics simulations on a FPGA supercomputer, in 2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS) (2011), IEEE Computer Society Washington, DC, USA, pp. 375–382

    Google Scholar 

  25. F. Khalili-Araghi, E. Tajkhorshid, K. Schulten, Dynamics of K+ ion conduction through Kv1.2. Biophys. J. 91(6), 72–76 (2006)

    Google Scholar 

  26. V. Kindratenko, D. Pointer, A case study in porting a production scientific supercomputing application to a reconfigurable computer, in 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2006), IEEE Computer Society Washington, DC, USA, pp. 13–22

    Google Scholar 

  27. S. Kumar, C. Huang, G. Zheng, E. Bohm, A. Bhatele, J.C. Phillips, H. Yu, L.V. Kalé, Scalable molecular dynamics with NAMD on the IBM Blue Gene/L system. IBM J. Res. Dev. 52(1–2), 177–188 (2008)

    Article  Google Scholar 

  28. R. Larson, J. Salmon, R. Dror, M. Deneroff, C. Young, J. Grossman, Y. Shan, J. Klepeis, D. Shaw, High-throughput pairwise point interactions in Anton, a specialized machine for molecular dynamics simulation, in IEEE 14th International Symposium on High Performance Computer Architecture (HPCA) (2008), IEEE Computer Society Washington, DC, USA, pp. 331–342

    Google Scholar 

  29. S. Lee, An FPGA implementation of the Smooth Particle Mesh Ewald reciprocal sum compute engine, Master’s thesis, The University of Toronto, Canada, 2005

    Google Scholar 

  30. A.D. MacKerell, N. Banavali, N. Foloppe, Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56(4), 257–265 (2000)

    Article  Google Scholar 

  31. G. Moraitakis, A.G. Purkiss, J.M. Goodfellow, Simulated dynamics and biological macromolecules. Rep. Progr. Phys. 66(3), 383 (2003)

    Google Scholar 

  32. T. Narumi, Y. Ohno, N. Futatsugi, N. Okimoto, A. Suenaga, R. Yanai, M. Taiji, A high-speed special-purpose computer for molecular dynamics simulations: MDGRAPE-3. NIC Workshop, From Computational Biophysics to Systems Biology, NIC Series, vol. 34 (2006), pp. 29–36

    Google Scholar 

  33. L. Nilsson, Efficient table lookup without inverse square roots for calculation of pair wise atomic interactions in classical simulations. J. Comput. Chem. 30(9), 1490–1498 (2009)

    Article  Google Scholar 

  34. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  35. J.C. Phillips, J.E. Stone, K. Schulten, Adapting a message-driven parallel application to GPU-accelerated clusters, in Proceedings of the ACM/IEEE Conference on Supercomputing (SC) (2008), IEEE Press Piscataway, NJ, USA, pp. 8:1–8:9

    Google Scholar 

  36. L. Phillips, R.S. Sinkovits, E.S. Oran, J.P. Boris, The interaction of shocks and defects in Lennard-Jones crystals. J. Phys.: Condens. Matter 5(35), 6357–6376 (1993)

    Google Scholar 

  37. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  MATH  Google Scholar 

  38. J.W. Ponder, D.A. Case, Force fields for protein simulations. Adv. Protein Chem. 66, 27–85 (2003)

    Article  Google Scholar 

  39. D.C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd edn. (Cambridge University Press, London, 2004)

    Book  MATH  Google Scholar 

  40. P. Schofield, Computer simulation studies of the liquid state. Comp. Phys. Comm. 5(1), 17–23 (1973)

    Article  Google Scholar 

  41. R. Scrofano, M. Gokhale, F. Trouw, V.K. Prasanna, A hardware/software approach to molecular dynamics on reconfigurable computers, in The 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2006), IEEE Computer Society Washington, DC, USA, pp. 23–34

    Google Scholar 

  42. Y. Shan, J. Klepeis, M. Eastwood, R. Dror, D. Shaw, Gaussian split Ewald: a fast Ewald mesh method for molecular simulation. J. Chem. Phys. 122(5), 54101:1–54101:13 (2005)

    Google Scholar 

  43. D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon, C. Young, B. Batson, K.J. Bowers, J.C. Chao, M.P. Eastwood, J. Gagliardo, J.P. Grossman, C.R. Ho, D.J. Ierardi, I. Kolossváry, J.L. Klepeis, T. Layman, C. McLeavey, M.A. Moraes, R. Mueller, E.C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, S.C. Wang, Anton, a special-purpose machine for molecular dynamics simulation, in Proceedings of the 34th Annual International Symposium on Computer Architecture (ISCA) (2007), ACM New York, NY, USA, pp. 1–12

    Google Scholar 

  44. D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon, C. Young, B. Batson, K.J. Bowers, J.C. Chao, M.P. Eastwood, J. Gagliardo, J.P. Grossman, C.R. Ho, D.J. Ierardi, I. Kolossváry, J.L. Klepeis, T. Layman, C. McLeavey, M.A. Moraes, R. Mueller, E.C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, S.C. Wang, Anton, a special-purpose machine for molecular dynamics simulation. Comm. ACM 51(7), 91–97 (2008)

    Article  Google Scholar 

  45. D.E. Shaw, R.O. Dror, J.K. Salmon, J.P. Grossman, K.M. Mackenzie, J.A. Bank, C. Young, M.M. Deneroff, B. Batson, K.J. Bowers, E. Chow, M.P. Eastwood, D.J. Ierardi, J.L. Klepeis, J.S. Kuskin, R.H. Larson, K. Lindorff-Larsen, P. Maragakis, M.A. Moraes, S. Piana, Y. Shan, B. Towles, Millisecond-scale molecular dynamics simulations on Anton, in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC) (2009), ACM New York, NY, USA, pp. 39:1–39:11

    Google Scholar 

  46. R.D. Skeel, I. Tezcan, D.J. Hardy, Multiple grid methods for classical molecular dynamics. J. Comput. Chem. 23(6), 673–684 (2002)

    Article  Google Scholar 

  47. M. Snir, A note on N-body computations with cutoffs. Theor. Comput. Syst. 37(2), 295–318 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  48. J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, K. Schulten, Accelerating molecular modeling applications with graphics processors. J. Comput. Chem. 28(16), 2618–2640 (2007)

    Article  Google Scholar 

  49. L. Verlet, Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159(1), 98–103 (1967)

    Google Scholar 

  50. C. Young, J.A. Bank, R.O. Dror, J.P. Grossman, J.K. Salmon, D.E. Shaw, A 32x32x32, spatially distributed 3D FFT in four microseconds on Anton, in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC) (2009), ACM New York, NY, USA, pp. 23:1–23:11

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NIH through award #R01-RR023168-01A1 and by the MGHPCC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Khan, M.A., Chiu, M., Herbordt, M.C. (2013). FPGA-Accelerated Molecular Dynamics. In: Vanderbauwhede, W., Benkrid, K. (eds) High-Performance Computing Using FPGAs. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1791-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1791-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1790-3

  • Online ISBN: 978-1-4614-1791-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics