Skip to main content

Subtrochanteric Fractures

  • Chapter
  • First Online:
Intramedullary Nailing

Abstract

Subtrochanteric fractures warrant special attention due to the biomechanical characteristics of this skeletal region and the muscle forces acting on the main fracture fragments. In a true subtrochanteric fracture pattern, the mobile proximal fragment is displaced in a flexed, abducted and externally rotated position. The distal femur segment will deviate into adduction and become shortened. The Seinsheimer classification is the most widely used. Advances in design and technology have expanded the indications for intramedullary nailing to nearly all subtrochanteric fracture patterns. The implants ideally should enable a simple and minimal invasive surgical technique and assure superior stress endurance. Correct alignment, length and rotation of the main fracture segments are most critical and should be achieved before the nailing procedure is started. Reduction aids may be used or a limited open reduction performed if necessary. Optimal reduction must be secured intraoperatively in the anteroposterior and lateral image intensifier views. The ideal entry portal is not only depending on the specific morphology of the proximal femur but also on the design of the nail, especially its medial lateral angle. In polytraumatized patients, patients with bilateral femur fractures, patients with severe open or contaminated fractures, primary nailing should be avoided. Advantages and limitations of nailing should be considered in refractures, non-unions and malunions of the subtrochanteric region and in patients with different anatomical features such as enhanced anteversion or varus. If the surgical procedure is performed correctly, good alignment and high fracture stability achieved, uneventful healing can be expected.

Atypical femoral fractures represent a specific fracture entity. These fractures, which are often but not exclusively subtrochanteric, are usually observed after a minimal trauma or even without any trauma in elderly patients that have been under long-term bisphosphonate treatment. Incomplete fractures require prophylactic nailing. Surgical management of complete and unstable fractures is associated with a relevant complication rate. Complications are related to changes in bone morphology as well as to changes in bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lanz W. Praktische Anatomie. Bein und Statik. Berlin/Heidelberg/New York: Springer; 2004. p. 170–83.

    Book  Google Scholar 

  2. Muller ME, Nazarian S, Koch P, Schatzker J. The AO classification of fractures of long bones. Berlin/Heidelberg: Springer; 1990.

    Book  Google Scholar 

  3. Smith JT, Goodman SB, Tischenko G. Treatment of comminuted femoral subtrochanteric fractures using Russell-Taylor reconstruction intramedullary nail. Orthopedics. 1991;14:125–9.

    CAS  PubMed  Google Scholar 

  4. Seinsheimer F. Subtrochanteric fractures of the femur. J Bone Joint Surg Am. 1978;60:300–6.

    CAS  PubMed  Google Scholar 

  5. Zickel RE. Subtrochanteric femoral fractures. Orthop Clin North Am. 1980;11:555–68.

    CAS  PubMed  Google Scholar 

  6. Forward DP, Christopher J, Doro CJ, O’Toole R, Kim H, Floyd JC, Sciadini MF, Turen CH, Hsieh AH, Nascone JW. A biomechanical comparison of a locking plate, a nail, and a 95° angled blade plate for fixation of subtrochanteric femoral fractures. J Orthop Trauma. 2012;26:334–40.

    Article  PubMed  Google Scholar 

  7. Gahr RH. Choice of implant for trochanteric fractures of the femur. The place of intramedullary implants. Trauma Berufskrankh. 2007;9 Suppl 1:S13–6.

    Article  Google Scholar 

  8. Parker MJ, Handoll HH. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev. 2010;(9):CD000093.

    Google Scholar 

  9. Kuzyk PR, Bhandari M, McKee MD, Russell TA, Schemitsch EH. Intramedullary versus extramedullary fixation for subtrochanteric femur fractures. J Orthop Trauma. 2009;23:465–70.

    Article  PubMed  Google Scholar 

  10. Ban I, Birkelund L, Palm H, Brix M, Troelsen A. Circumferential wires as a supplement to intramedullary nailing in unstable trochanteric hip fractures. 4 reoperations in 60 patients followed for 1 year. Acta Orthop. 2012;83:240–3.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Afsari A, Liporace F, Lindvall E, Infante Jr A, Sagi HC, Haidukewych GJ. Clamp-assisted reduction of high subtrochanteric fractures of the femur: surgical technique. J Bone Joint Surg Am. 2010;92(Suppl 1 Pt 2):217–25.

    PubMed  Google Scholar 

  12. Bain GI, Zacest AC, Paterson DC, Middleton J, Pohl AP. Abduction strength following intramedullary nailing of the femur. J Orthop Trauma. 1997;11:93–7.

    Article  CAS  PubMed  Google Scholar 

  13. Ricci WM. Nailing subtrochanteric femur fractures: the technical subtleties of the ideal starting point. Tech Orthop. 2008;23:126–30.

    Article  Google Scholar 

  14. Robinson CM, Houshian S, Khan LAK. Trochanteric-entry long cephalomedullary nailing of subtrochanteric fractures caused by low-energy trauma. J Bone Joint Surg Am. 2005;87:2217–26.

    Article  PubMed  Google Scholar 

  15. Streubel PN, Wong AH, Ricci WM, Gardner MJ. Is there a standard trochanteric entry site for nailing of subtrochanteric femur fractures? J Orthop Trauma. 2011;25:202–7.

    Article  PubMed  Google Scholar 

  16. Taglang G, Krug F, Luke KW, Probe R. Distal targeting system for gamma3S long nail R1.5/ T2 recon nail R1.5: operative technique. Mahwah, NJ, USA: Stryker; 2010.

    Google Scholar 

  17. Expert adolescent lateral femoral nail: technique guide. Solothurn, Switzerland: Synthes; 2012.

    Google Scholar 

  18. PFNA. Proximal femoral nail antirotation: technique guide. Solothurn, Switzerland: Synthes; 2011.

    Google Scholar 

  19. Trigen intramedullary nail system: like no other. Cordova, USA: Smith & Nephew; 2012.

    Google Scholar 

  20. Expert lateral femoral nail: technique guide. Solothurn, Switzerland: Synthes; 2007.

    Google Scholar 

  21. Lee PC, Hsieh PH, Yu SW, Shiao CW, Kao HK, Wu CC. Biologic plating versus intramedullary nailing for comminuted subtrochanteric fractures in young adults: a prospective, randomized study of 66 cases. J Trauma. 2007;63:1283–91.

    Article  PubMed  Google Scholar 

  22. Wirtz C, Abbassi F, Evangelopoulos DS, Kohl S, Siebenrock KA, Krüger A. High failure rate of trochanteric fracture osteosynthesis with proximal femoral locking compression plate. Injury. 2013;44:751–6.

    Article  CAS  PubMed  Google Scholar 

  23. Wenda K, Runkel M, Rudig L, Degreif J. The effect of bone marrow embolization on the choice of procedure in the stabilization of femoral fractures. Orthopäde. 1995;24:151–63.

    CAS  PubMed  Google Scholar 

  24. Giannoudis PV, Tzioupis C, Pape HC. Fat embolism: the reaming controversy. Injury. 2006;37S:S50–8.

    Article  Google Scholar 

  25. O’Toole RV, O’Brien M, Scalea TM, Habashi N, Pollak AN, Turen CH. Resuscitation before stabilization of femoral fractures limits acute respiratory distress syndrome in patients with multiple traumatic injuries despite low use of damage control orthopaedics. J Trauma. 2009;67:1013–21.

    Article  PubMed  Google Scholar 

  26. Husebye E, Lyberg T, Opdahl H, Aspelin T, Støen RO, Madsen JE, Røise O. Intramedullary nailing of femoral shaft fractures in polytraumatized patients: a longitudinal, prospective and observational study of the procedure-related impact on cardiopulmonary- and inflammatory responses. Scand J Trauma Resusc Emerg Med. 2012;20:2.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Stavlas P, Giannoudis PV. Bilateral femoral fractures: does intramedullary nailing increase systemic complications and mortality rates? Injury. 2009;40:1125–8.

    Article  PubMed  Google Scholar 

  28. Noumi T, Yokoyama K, Ohtsuka H, Nakamura K, Itoman M. Intramedullary nailing for open fractures of the femoral shaft: evaluation of contributing factors on deep infection and non-union using multivariate analysis. Injury. 2005;36:1085–93.

    Article  PubMed  Google Scholar 

  29. Singh D, Garg R, Bassi JL, Tripathi SK. Open grade III fractures of femoral shaft: outcome after early reamed intramedullary nailing. Orthop Traumatol Surg Res. 2011;97:506–11.

    Article  CAS  PubMed  Google Scholar 

  30. Haidukewych GJ, Berry DJ. Nonunion of fractures of the subtrochanteric region of the femur. Clin Orthop Relat Res. 2004;419:185–8.

    Article  PubMed  Google Scholar 

  31. Tzioupis C, Panteliadis P, Gamie Z, Tsiridis E. Revision of a non-united subtrochanteric femoral fracture around a failed intramedullary nail with the use of RIA products, BMP-7 and hydroxyapatite: a case report. J Med Case Reports. 2011;5:87.

    Article  PubMed Central  Google Scholar 

  32. Shroeder JE, Mosheiff R, Khoury A, Liebergall M, Weil YA. The outcome of closed, intramedullary exchange nailing with reamed insertion in the treatment of femoral shaft non unions. J Orthop Trauma. 2009;23:653–7.

    Article  PubMed  Google Scholar 

  33. Zhao X, Yan SG, Li H, Wu HB. Short reconstruction nail for intertrochanteric fracture: does it really fit Asian feature? Arch Orthop Trauma Surg. 2012;132:81–6.

    Article  PubMed  Google Scholar 

  34. Pu JS, Liu L, Wang GL, Fang Y, Yang TF. Results of the proximal femoral nail anti-rotation (PFNA) in elderly Chinese patients. Int Orthop. 2009;33:1441–4.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Leung KS, Procter P, Robioneck B, Behrens K. Geometric mismatch of the gamma nail to the Chinese femur. Clin Orthop Relat Res. 1996;323:42–8.

    Article  PubMed  Google Scholar 

  36. Hwang JH, Oh JK, Han SH, Shon WY, Oh CW. Mismatch between PFNa and medullary canal causing difficulty in nailing of the pertrochanteric fractures. Arch Orthop Trauma Surg. 2008;128:1443–6.

    Article  PubMed  Google Scholar 

  37. Brunner A, Jockel JA, Babst R. The PFNA proximal femur nail in treatment of unstable proximal femur fractures—3 cases of postoperative perforation of the helical blade into the hip joint. J Orthop Trauma. 2008;22:731–6.

    Article  PubMed  Google Scholar 

  38. Chaoliang L, Yue F, Lei L. The new proximal femoral nail Antirotation-Asia: early results. Orthopedics. 2011;34:e18–23.

    Google Scholar 

  39. Orler R, Hersche O, Helfet DL, Mayo KA, Ward T, Ganz R. Avascular femur head necrosis as severe complication after femoral intramedullary nailing in children and adolescents. Unfallchirurg. 1998;101:495–9.

    Article  CAS  PubMed  Google Scholar 

  40. Melisie F, Krug E, Duijff JW, Krijnen P, Schipper IB. Age-specific treatment of femoral shaft fractures in children. Ned Tijdschr Geneesk. 2012;156:A3976.

    Google Scholar 

  41. Park H, Kim HW. Treatment of femoral shaft fracture with an interlocking humeral nail in older children and adolescents. Yonsei Med J. 2012;53:408–15.

    Article  PubMed Central  PubMed  Google Scholar 

  42. MacNeil JA, Francis A, El-Hawary R. A systematic review of rigid, locked, intramedullary nail insertion sites and avascular necrosis of the femoral head in the skeletally immature. J Pediatr Orthop. 2011;31:377–80.

    Article  PubMed  Google Scholar 

  43. Riehl JT, Widmaier JC. Techniques of obtaining and maintaining reduction during nailing of femur fractures. Orthopedics. 2009;32:581.

    Article  PubMed  Google Scholar 

  44. Langford J, Burgess A. Nailing of proximal and distal fractures of the femur: limitations and techniques. J Orthop Trauma. 2009;23:S22–5.

    Article  PubMed  Google Scholar 

  45. Ing-Lorenzini K, Desmeules J, Plachta O, Suva D, Dayer P, Peter R. Low-energy femoral fractures associated with the long-term use of bisphosphonates: a case series from a Swiss university hospital. Drug Saf. 2009;32:775–85.

    Article  CAS  PubMed  Google Scholar 

  46. Edwards BJ, Bunta AD, Lane J, Odvina C, Rao S, Raisch DW, McKoy JM, Omar I, Belknap SM, Garg V, Hahr AJ, Samaras AT, Fisher MJ, West DP, Langman CB, Stern PH. Biphosphonates and nonhealing femoral fractures: analysis of the FDA adverse events reporting system (FAERS) in international safety efforts. J Bone Joint Surg Am. 2013;95:297–307.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Mashiba T, Mori S, Burr DB, Komatsubara S, Cao Y, Manabe T, Norimatsu H. The effects of suppressed bone remodelling by bisphosphonates on microdamage accumulation and degree of mineralization in the cortical bone of dog rib. J Bon Miner Metab. 2005;23(Suppl):36–42.

    Article  CAS  Google Scholar 

  48. Wang Z, Bhattacharyya T. Trends in incidence of subtrochanteric fragility fractures and bisphosphonate use among the US elderly, 1996–2007. J Bone Miner Res. 2011;26(3):553–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Goh SK, Yang KY, Koh JS. Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution. J Bone Joint Surg Br. 2007;89:349–53.

    Article  PubMed  Google Scholar 

  50. Kwek EB, Goh SK, Koh JS. An emerging pattern of subtrochanteric stress fractures: a long-term complication of alendronate therapy? Injury. 2008;39:224–31.

    Article  PubMed  Google Scholar 

  51. Lenart BA, Lorich DG, Lane JM. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med. 2008;358:1304–6.

    Article  CAS  PubMed  Google Scholar 

  52. Neviaser AS, Lane JM, Lenart BA, Edobor-Osula F, Lorich DG. Low-energy femoral shaft fractures associated with alendronate use. J Orthop Trauma. 2008;22:346–50.

    Article  PubMed  Google Scholar 

  53. Dell RM, Adams AL, Greene DF, Funahashi TT, Silverman SL, Eisemon EO, Zhou H, Burchette RJ, Ott SM. Incidence of atypical nontraumatic diaphyseal fractures of the femur. J Bone Miner Res. 2012;27:2544–50.

    Article  PubMed  Google Scholar 

  54. Banffy MB, Vrahas MS, Ready JE, Abraham JA. Nonoperative versus prophylactic treatment of bisphosphonate-associated femoral stress fractures. Clin Orthop Relat Res. 2011;469:2028–34.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Teo BJ, Koh JS, Goh SK, Png MA, Chua DT, Howe TS. Post-operative outcomes of atypical femoral subtrochanteric fracture in patients on bisphosphonate therapy. Bone Joint J. 2014;96:658–64.

    Article  PubMed  Google Scholar 

  56. Egol KA, Park JH, Rosenberg ZS, Peck V, Tejwani NC. Healing delayed but generally reliable after bisphosphonate-associated complete femur fractures treated with IM nails. Clin Orthop Relat Res. 2014;472:2728–34.

    Article  PubMed  Google Scholar 

  57. Weil YA, Rivkin G, Safran O, Liebergall M, Foldes AJ. The outcome of surgically treated femur fractures associated with long-term bisphosphonate use. J Trauma. 2011;71:186–90.

    Article  CAS  PubMed  Google Scholar 

  58. Prasarn ML, Ahn J, Helfet DL, Lane JM, Lorich DG. Biphosphonate-associated femur fractures have high complication rates with operative fixation. Clin Orthop Relat Res. 2012;470:2295–301.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Lim HC, Bae JH, Yi JW, Park JH. Bilateral stress fracture of the femoral shaft after total knee arthroplasty: a case report. Knee. 2011;18:354–7.

    Article  PubMed  Google Scholar 

  60. Van Doorn R, Stapert JW. The long gamma nail in the treatment of 329 subtrochanteric fractures with major extension into the femoral shaft. Eur J Surg. 2000;166:240–6.

    Article  PubMed  Google Scholar 

  61. Beingessner DM, Scolaro JA, Orec RJ, Nork SE, Barei DP. Open reduction and intramedullary stabilization of subtrochanteric femur fractures: a retrospective study of 56 cases. Injury. 2013;44:1910–5.

    Article  PubMed  Google Scholar 

  62. Kim JW, Park KC, Oh JK, Oh CW, Yoon YC, Chang HW. Percutaneous cerclage wiring followed by intramedullary nailing for subtrochanteric femoral fractures: a technical note with clinical results. Arch Orthop Trauma Surg. 2014;134:1227–35.

    Article  PubMed  Google Scholar 

  63. Kennedy MT, Mitra A, Hierlihy TG, Harty JA, Reidy D, Dolan M. Subtrochanteric hip fractures treated with cerclage cables and long cephalomedullary nails: a review of 17 consecutive cases over 2 years. Injury. 2011;42:1317–21.

    Article  PubMed  Google Scholar 

  64. Matre K, Havelin LI, Gjertsen JE, Vinje T, Espehaug B, Fevang JM. Sliding hip screw versus IM nail in reverse oblique trochanteric and subtrochanteric fractures. A study of 2716 patients in the Norwegian Hip Fracture Register. Injury. 2013;44:735–42.

    Article  PubMed  Google Scholar 

  65. Matre K, Vinje T, Havelin LI, Gjertsen JE, Furnes O, Espehaug B, Kjellevold SH, Fevang JM. Trigen Intertan intramedullary nail versus sliding hip screw: a prospective, randomized multicenter study on pain, function, and complications in 684 patients with an intertrochanteric or subtrochanteric fracture and one year of follow-up. J Bone Joint Surg Am. 2013;95:200–8.

    Article  PubMed  Google Scholar 

  66. Rahme DM, Harris IA. Intramedullary nailing versus fixed angle blade plating for subtrochanteric femoral fractures: a prospective randomised controlled trial. J Orthop Surg (Hong Kong). 2007;15:278–81.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schuetz MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Schuetz, M., Mettyas, T., Pichler, R., Bail, H. (2015). Subtrochanteric Fractures. In: Rommens, P., Hessmann, M. (eds) Intramedullary Nailing. Springer, London. https://doi.org/10.1007/978-1-4471-6612-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6612-2_18

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6611-5

  • Online ISBN: 978-1-4471-6612-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics