Skip to main content

Addressing Nutrition and Growth in Children with Congenital Heart Disease

  • Chapter
  • First Online:
Pediatric and Congenital Cardiac Care

Abstract

Adequate nutrition is required for infants and children to grow and develop normally. Children with congenital heart disease commonly experience growth failure early in life with major potential consequences. This is especially true for those children who require surgery during the first several weeks of life. The etiology of this growth failure poorly understood but often results in both short and long term adverse outcomes. Careful attention to growth monitoring and appropriate intervention when needed can alleviate some growth problems in children with congenital heart disease. This can be accomplished by standardization of monitoring and nutrition practices. Feeding infants with congenital heart disease also poses some risks including a higher risk of necrotizing enterocolitis and risks associated with enteral feeding via nasogastric tube. While there has been considerable improvement in our understanding of feeding problems in congenital heart disease, there is much work to be done to help understand and alleviate this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hui W, Grover G. Nutritional needs. In: Berkowitz BD, editor. Berkowitz’s pediatrics: a primary care approach. Elk Grove Village: American Academy of Pediatrics; 2008. p. 63–9.

    Google Scholar 

  2. Steltzer M, Rudd N, Pick B. Nutrition care for newborns with congenital heart disease. Clin Perinatol. 2005;32(4):1017–30, xi.

    Article  PubMed  Google Scholar 

  3. Himes JH, et al. Parent-specific adjustments for evaluation of recumbent length and stature of children. Pediatrics. 1985;75(2):304–13.

    CAS  PubMed  Google Scholar 

  4. Mascarenhas MR, Zemel B, Stallings VA. Nutritional assessment in pediatrics. Nutrition. 1998;14(1):105–15.

    Article  CAS  PubMed  Google Scholar 

  5. Forchielli ML, et al. Children with congenital heart disease: a nutrition challenge. Nutr Rev. 1994;52(10):348–53.

    Article  CAS  PubMed  Google Scholar 

  6. Gingell RL, Pieroni DR, Hornung MG. Growth problems associated with congenital heart disease in infancy. In: Lebenthal E, editor. Textbook of gastroenterology and nutrition in infancy. New York: Raven; 1981.

    Google Scholar 

  7. Greer F, et al. Cardiac disease. In: Kleinman R, editor. Pediatric nutrition handbook. Elk Grove: American Academy of Pediatrics; 2009. p. 981–99.

    Google Scholar 

  8. Anderson JB, et al. Lower weight-for-age z score adversely affects hospital length of stay after the bidirectional Glenn procedure in 100 infants with a single ventricle. J Thorac Cardiovasc Surg. 2009;138(2):397–404.e1.

    Article  PubMed  Google Scholar 

  9. Anderson JB, et al. Poor post-operative growth in infants with two-ventricle physiology. Cardiol Young. 2011;21(4):421–9.

    Article  PubMed  Google Scholar 

  10. Anderson JB, et al. Low weight-for-age z-score and infection risk after the Fontan procedure. Ann Thorac Surg. 2011;91(5):1460–6.

    Article  PubMed  Google Scholar 

  11. Barton JS, et al. Energy expenditure in congenital heart disease. Arch Dis Child. 1994;70(1):5–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Davis D, et al. Feeding difficulties and growth delay in children with hypoplastic left heart syndrome versus d-transposition of the great arteries. Pediatr Cardiol. 2008;29(2):328–33.

    Article  CAS  PubMed  Google Scholar 

  13. Pillo-Blocka F, et al. Rapid advancement to more concentrated formula in infants after surgery for congenital heart disease reduces duration of hospital stay: a randomized clinical trial. J Pediatr. 2004;145(6):761–6.

    Article  PubMed  Google Scholar 

  14. Vogt KN, et al. Somatic growth in children with single ventricle physiology impact of physiologic state. J Am Coll Cardiol. 2007;50(19):1876–83.

    Article  PubMed  Google Scholar 

  15. Kelleher DK, et al. Growth and correlates of nutritional status among infants with hypoplastic left heart syndrome (HLHS) after stage 1 Norwood procedure. Nutrition. 2006;22(3):237–44.

    Article  CAS  PubMed  Google Scholar 

  16. Rogers EJ, et al. Barriers to adequate nutrition in critically ill children. Nutrition. 2003;19(10):865–8.

    Article  PubMed  Google Scholar 

  17. Kogon BE, et al. Feeding difficulty in newborns following congenital heart surgery. Congenit Heart Dis. 2007;2(5):332–7.

    Article  PubMed  Google Scholar 

  18. Kyle UG, Genton L, Pichard C. Hospital length of stay and nutritional status. Curr Opin Clin Nutr Metab Care. 2005;8(4):397–402.

    Article  PubMed  Google Scholar 

  19. Pichard C, et al. Nutritional assessment: lean body mass depletion at hospital admission is associated with an increased length of stay. Am J Clin Nutr. 2004;79(4):613–8.

    CAS  PubMed  Google Scholar 

  20. Leite HP, et al. Serum albumin and clinical outcome in pediatric cardiac surgery. Nutrition. 2005;21(5):553–8.

    Article  CAS  PubMed  Google Scholar 

  21. Leite HP, et al. Nutritional assessment and surgical risk markers in children submitted to cardiac surgery. Sao Paulo Med J. 1995;113(1):706–14.

    Article  CAS  PubMed  Google Scholar 

  22. Goldberg C. Neurocognitive outcomes for children with functional single ventricle malformations. Pediatr Cardiol. 2007;28(6):443–7.

    Article  CAS  PubMed  Google Scholar 

  23. Mahle WT, et al. Neurodevelopmental outcome and lifestyle assessment in school-aged and adolescent children with hypoplastic left heart syndrome. Pediatrics. 2000;105(5):1082–9.

    Article  CAS  PubMed  Google Scholar 

  24. Marino BS, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 2012;126(9):1143–72.

    Article  PubMed  Google Scholar 

  25. Mahle WT, Wernovsky G. Neurodevelopmental outcomes in hypoplastic left heart syndrome. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2004;7:39–47.

    Article  PubMed  Google Scholar 

  26. Wernovsky G, et al. Cognitive development after the Fontan operation. Circulation. 2000;102(8):883–9.

    Article  CAS  PubMed  Google Scholar 

  27. Hoffman GM, et al. Systemic venous oxygen saturation after the Norwood procedure and childhood neurodevelopmental outcome. J Thorac Cardiovasc Surg. 2005;130(4):1094–100.

    Article  PubMed  Google Scholar 

  28. Bellinger DC, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation. 1999;100(5):526–32.

    Article  CAS  PubMed  Google Scholar 

  29. Hovels-Gurich HH, et al. Long-term behavior and quality of life after corrective cardiac surgery in infancy for tetralogy of Fallot or ventricular septal defect. Pediatr Cardiol. 2007;28(5):346–54.

    Article  CAS  PubMed  Google Scholar 

  30. Grantham-McGregor S. A review of studies of the effect of severe malnutrition on mental development. J Nutr. 1995;125(8 Suppl):2233S–8.

    CAS  PubMed  Google Scholar 

  31. Galler JR, Ramsey F, Solimano G. A follow-up study of the effects of early malnutrition on subsequent development. II. Fine motor skills in adolescence. Pediatr Res. 1985;19(6):524–7.

    Article  CAS  PubMed  Google Scholar 

  32. Grantham-McGregor SM, Walker S, Chang S. Nutritional deficiencies and later behavioural development. Proc Nutr Soc. 2000;59:47–54.

    Article  CAS  PubMed  Google Scholar 

  33. Schidlow DN, et al. Variation in interstage outpatient care after the Norwood procedure: a report from the Joint Council on Congenital Heart Disease National Quality Improvement Collaborative. Congenit Heart Dis. 2011;6(2):98–107.

    Article  PubMed  Google Scholar 

  34. Anderson JB, et al. Variation in growth of infants with a single ventricle. J Pediatr. 2012;161(1):16–21.e1; quiz 21 e2–3.

    Article  PubMed  Google Scholar 

  35. Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med. 2001;29(12):2264–70.

    Article  CAS  PubMed  Google Scholar 

  36. Braudis NJ, et al. Enteral feeding algorithm for infants with hypoplastic left heart syndrome poststage I palliation. Pediatr Crit Care Med. 2009;10(4):460–6.

    Article  PubMed  Google Scholar 

  37. Mehta NM, et al. Nutritional practices and their relationship to clinical outcomes in critically ill children–an international multicenter cohort study*. Crit Care Med. 2012;40(7):2204–11.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Medoff-Cooper B, Irving SY. Innovative strategies for feeding and nutrition in infants with congenitally malformed hearts. Cardiol Young. 2009;19 Suppl 2:90–5.

    Article  PubMed  Google Scholar 

  39. del Castillo SL, et al. Reducing the incidence of necrotizing enterocolitis in neonates with hypoplastic left heart syndrome with the introduction of an enteral feed protocol. Pediatr Crit Care Med. 2010;11(3):373–7.

    PubMed  Google Scholar 

  40. Premji SS, McNeil DA, Scotland J. Regional neonatal oral feeding protocol: changing the ethos of feeding preterm infants. J Perinat Neonatal Nurs. 2004;18(4):371–84.

    Article  PubMed  Google Scholar 

  41. Skillman HE, Wischmeyer PE. Nutrition therapy in critically ill infants and children. JPEN J Parenter Enteral Nutr. 2008;32(5):520–34.

    Article  PubMed  Google Scholar 

  42. Slicker J, et al. Nutrition algorithms for infants with hypoplastic left heart syndrome; birth through the first interstage period. Congenit Heart Dis. 2013;8:89–102.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Connor JA, et al. Clinical outcomes and secondary diagnoses for infants born with hypoplastic left heart syndrome. Pediatrics. 2004;114(2):e160–5.

    Article  PubMed  Google Scholar 

  44. Skinner ML, et al. Laryngopharyngeal dysfunction after the Norwood procedure. J Thorac Cardiovasc Surg. 2005;130(5):1293–301.

    Article  PubMed  Google Scholar 

  45. Biewer ES, et al. Chylothorax after surgery on congenital heart disease in newborns and infants-risk factors and efficacy of MCT-diet. J Cardiothorac Surg. 2010;5:127.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Panthongviriyakul C, Bines JE. Post-operative chylothorax in children: an evidence-based management algorithm. J Paediatr Child Health. 2008;44(12):716–21.

    Article  PubMed  Google Scholar 

  47. Pratap U, et al. Octreotide to treat postoperative chylothorax after cardiac operations in children. Ann Thorac Surg. 2001;72(5):1740–2.

    Article  CAS  PubMed  Google Scholar 

  48. Rosti L, et al. Octreotide in the management of postoperative chylothorax. Pediatr Cardiol. 2005;26(4):440–3.

    Article  CAS  PubMed  Google Scholar 

  49. Nguyen DM, et al. The management of chylothorax/chylopericardium following pediatric cardiac surgery: a 10-year experience. J Card Surg. 1995;10(4 Pt 1):302–8.

    Article  CAS  PubMed  Google Scholar 

  50. Roehr CC, et al. Somatostatin or octreotide as treatment options for chylothorax in young children: a systematic review. Intensive Care Med. 2006;32(5):650–7.

    Article  CAS  PubMed  Google Scholar 

  51. Jeffries HE, et al. Gastrointestinal morbidity after Norwood palliation for hypoplastic left heart syndrome. Ann Thorac Surg. 2006;81(3):982–7.

    Article  PubMed  Google Scholar 

  52. Johnstone JC, Leung JS, Friedman JN. Nasogastric tube misadventures. Clin Pediatr (Phila). 2011;50(10):983–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey B. Anderson MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Anderson, J.B., Beekman, R.H. (2015). Addressing Nutrition and Growth in Children with Congenital Heart Disease. In: Barach, P., Jacobs, J., Lipshultz, S., Laussen, P. (eds) Pediatric and Congenital Cardiac Care. Springer, London. https://doi.org/10.1007/978-1-4471-6566-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6566-8_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6565-1

  • Online ISBN: 978-1-4471-6566-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics