Skip to main content

Nutrition in Congenital Heart Disease: Challenges, Guidelines, and Nutritional Support

  • Living reference work entry
  • First Online:
Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care

Abstract

Infants and children with congenital heart disease have high energy requirement, poor intake, and are frequently malnourished. Delivering adequate nutrition is challenging, and may be constrained by fluid limitation, feeding intolerance, gut hypoperfusion secondary to low cardiac output and heart failure, hypoxemia, or ductal dependent blood supply. Nutrition intervention, with close tolerance monitoring, is safe, and is essential to optimize nutrition status, and reduce morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Okoromah CAN et al (2011) Prevalence, profile and predictors of malnutrition in children with congenital heart defects: a case-control observational study. Arch Dis Child 96:354–360

    Article  PubMed  Google Scholar 

  2. Vaidyanathan B et al (2008) Malnutrition in children with congenital heart disease (CHD) determinants and short term impact of corrective intervention. Indian Pediatr 45:541–546

    PubMed  Google Scholar 

  3. Varan B, Yilmaz G (1999) Malnutrition and growth failure in cyanotic and acyanotic congenital heart disease with and without pulmonary hypertension. Arch Dis Child 81(1):49–52

    Google Scholar 

  4. Toole BJ et al (2014) Perioperative nutritional support and malnutrition in infants and children with congenital heart disease. Congenit Heart Dis 9(1):15–25

    Article  PubMed  Google Scholar 

  5. Jacobs JP, Wernovsky G, Elliott MJ (2007) Analysis of outcomes for congenital cardiac disease: can we do better? Cardiol Young 17(Suppl 2):145–158

    Article  PubMed  Google Scholar 

  6. Tchervenkov CI et al (2008) The improvement of care for paediatric and congenital cardiac disease across the world: a challenge for the World Society for Pediatric and Congenital Heart Surgery. Cardiol Young 18(Suppl 2):63–69

    Article  PubMed  Google Scholar 

  7. Thiagarajan RR, Laussen PC (2011) Mortality as an outcome measure following cardiac surgery for congenital heart disease in the current era. Paediatr Anaesth 21(5):604–608

    Article  PubMed  Google Scholar 

  8. Newburger JW et al (2003) Length of stay after infant heart surgery is related to cognitive outcome at age 8 years. J Pediatr 143(1):67–73

    Article  PubMed  Google Scholar 

  9. Grantham-McGregor SM, Walker SP, Chang S (2000) Nutritional deficiencies and later behavioural development. Proc Nutr Soc 59(1):47–54

    Article  CAS  PubMed  Google Scholar 

  10. Menon G, Poskitt EM (1985) Why does congenital heart disease cause failure to thrive? Arch Dis Child 60(12):1134–1139

    Google Scholar 

  11. Boctor DL, Pillo-Blocka F, McCrindle BW (1999) Nutrition after cardiac surgery for infants with congenital heart disease. Nutr Clin Pract 14(3):111–115

    Article  Google Scholar 

  12. Sondheimer JM, Hamilton JR (1978) Intestinal function in infants with severe congenital heart disease. J Pediatr 92(4):572–578

    Article  CAS  PubMed  Google Scholar 

  13. Dietary reference intakes: the essential guide to nutrient requirements (2006). The National Academies Press, Washington, DC

    Google Scholar 

  14. Anderson JB et al (2011) Low weight-for-age z-score and infection risk after the Fontan procedure. Ann Thorac Surg 91(5):1460–1466

    Article  PubMed  Google Scholar 

  15. FAO (2001) Human energy requirements. Energy Requirements of Infants from Birth to 12 months [cited 2011]. Available from: http://www.fao.org/docrep/007/y5686e/y5686e00.htm

  16. Ackerman IL et al (1998) Total but not resting energy expenditure is increased in infants with ventricular septal defects. Pediatrics 102:1172–1177

    Article  CAS  PubMed  Google Scholar 

  17. Cameron JW, Rosenthal A, Olson AD (1995) Malnutrition in hospitalized children with congenital heart disease. Arch Pediatr Adolesc Med 149(10):1098–1102

    Article  CAS  PubMed  Google Scholar 

  18. El-Sisi A et al (2009) Linear growth in relation to the circulating concentration of insulin-like growth factor-I and free thyroxine in infants and children with congenital cyanotic heart disease before vs. after surgical intervention. J Trop Pediatr 55:302–306

    Article  PubMed  Google Scholar 

  19. Farrell AG et al (2001) Large left-to-right shunts and congestive heart with ventricular septal defect. J Cardiol 87:1128–1131

    Article  CAS  Google Scholar 

  20. Strangway A et al (1976) Diet and growth in congenital heart disease. Pediatrics 57(1):75–86

    CAS  PubMed  Google Scholar 

  21. Baum D et al (1980) Early heart failure as a cause of growth and tissue disorders in children with congenital heart disease. Circulation 62(6):1145–1151

    Article  CAS  PubMed  Google Scholar 

  22. Schwarz SM et al (1990) Enteral nutrition in infants with congenital heart disease and growth failure. Pediatrics 86(3):368–373

    CAS  PubMed  Google Scholar 

  23. Van Der Kuip M et al (2003) Energy expenditure in infants with congenital heart disease, including a meta-analysis. Acta Paediatr 92(8):921–927

    Google Scholar 

  24. Krauss AN, Auld PA (1975) Metabolic rate of neonates with congenital heart disease. Arch Dis Child 50:539–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coss-Bu JA et al (1998) Resting energy expenditure and nitrogen balance in critically ill pediatric patients on mechanical ventilation. Nutrition 14(9):649–652

    Article  CAS  PubMed  Google Scholar 

  26. De Wit B et al (2010) Challenge of predicting resting energy expenditure in children undergoing surgery for congenital heart disease. Pediatr Crit Care Med 11(4):496–501

    PubMed  Google Scholar 

  27. Jaksic T et al (2001) Do critically ill surgical neonates have increased energy expenditure? J Pediatr Surg 36(1):63–67

    Article  CAS  PubMed  Google Scholar 

  28. Jones MO et al (1993) The metabolic response to operative stress in infants. J Pediatr Surg 28(10):1258–1262, discussion 1262–3

    Article  CAS  PubMed  Google Scholar 

  29. Joosten KF, Kerklaan D, Verbruggen SC (2016) Nutritional support and the role of the stress response in critically ill children. Curr Opin Clin Nutr Metab Care 19(3):226–233

    CAS  PubMed  Google Scholar 

  30. Preiser JC et al (2014) Metabolic response to the stress of critical illness. Br J Anaesth 113(6):945–954

    Article  CAS  PubMed  Google Scholar 

  31. Leitch CA (2000) Growth, nutrition and energy expenditure in pediatric heart failure. Prog Pediatr Cardiol 11(3):195–202

    Article  CAS  PubMed  Google Scholar 

  32. Lees MH et al (1965) Relative hypermetabolism in infants with congenital heart disease and undernutrition. Pediatrics 36:183–191

    CAS  PubMed  Google Scholar 

  33. Leitch CA et al (1998) Increased energy expenditure in infants with cyanotic congenital heart disease. J Pediatr 133:755–760

    Article  CAS  PubMed  Google Scholar 

  34. Nydegger A et al (2009) Changes in resting energy expenditure in children with congenital heart disease. Eur J Clin Nutr 63:392–397

    Article  CAS  PubMed  Google Scholar 

  35. Jones RV (1961) Fat-malabsorption in congestive cardiac failure. Br Med J 1:1276–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vaisman NEA (1994) Malabsorption in infants with congenital heart disease under diuretic treatment. Pediatric Research 36(4):545–549

    Google Scholar 

  37. Grossman H et al (1980) The dietary chloride deficiency syndrome. Pediatrics 66(3):366–374

    CAS  PubMed  Google Scholar 

  38. Chudley AE et al (1980) Nutritional rickets in 2 very low birthweight infants with chronic lung disease. Arch Dis Child 55:687–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davis D et al (2008) Feeding difficulties and growth delay in children with hypoplastic left heart syndrome versus d-transposition of the great arteries. Pediatr Cardiol 29:328–333

    Article  CAS  PubMed  Google Scholar 

  40. Li J et al (2008) Energy expenditure and caloric and protein intake in infants following the Norwood procedure. Pediatr Crit Care Med 9:55–61

    Article  PubMed  Google Scholar 

  41. Kelleher DK et al (2006) Growth and correlates of nutritional status among infants with hypoplastic left heart syndrome (HLHS) after stage 1 Norwood procedure. Nutrition (Burbank, Los Angeles County, Calif.) 22:237–244

    Article  CAS  Google Scholar 

  42. Medoff-Cooper B et al (2011) Weight change in infants with a functionally univentricular heart: from surgical intervention to hospital discharge. Cardiol Young 21:136–144

    Article  PubMed  Google Scholar 

  43. Kaufman J et al (2015) Improved nutrition delivery and nutrition status in critically ill children with heart disease. Pediatrics 135(3):e717–e725

    Article  PubMed  Google Scholar 

  44. Burch PT et al (2014) Longitudinal assessment of growth in hypoplastic left heart syndrome: results from the single ventricle reconstruction trial. J Am Heart Assoc 3(3):e000079

    Article  PubMed  PubMed Central  Google Scholar 

  45. Anderson JB et al (2009) Lower weight-for-age z score adversely affects hospital length of stay after the bidirectional Glenn procedure in 100 infants with a single ventricle. J Thorac Cardiovasc Surg 138(2):397–404 e1

    Article  PubMed  Google Scholar 

  46. Burch PT et al (2017) Assessment of growth 6 years after the Norwood procedure. J Pediatr 180:270–274 e6

    Article  PubMed  Google Scholar 

  47. Shamszad P et al (2016) Obesity and diabetes mellitus adversely affect outcomes after cardiac surgery in children’s hospitals. Congenit Heart Dis 11(5):409–414

    Article  PubMed  Google Scholar 

  48. Newell AC et al (2018) Obesity: risk factor for increased resource utilization at bidirectional Glenn. JPEN J Parenter Enteral Nutr 42(1):49–55

    PubMed  Google Scholar 

  49. Mehta NM et al (2017) Guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Pediatr Crit Care Med 18(7):675–715

    Article  PubMed  Google Scholar 

  50. Botran M et al (2011) Enteral nutrition in the critically ill child: comparison of standard and protein-enriched diets. J Pediatr 159(1):27–32 e1

    Article  CAS  PubMed  Google Scholar 

  51. Cui Y et al (2018) Effects and tolerance of protein and energy-enriched formula in infants following congenital heart surgery: a randomized controlled trial. JPEN J Parenter Enteral Nutr 42(1):196–204

    CAS  PubMed  Google Scholar 

  52. van Waardenburg DA et al (2009) Critically ill infants benefit from early administration of protein and energy-enriched formula: a randomized controlled trial. Clin Nutr 28(3):249–255

    Article  PubMed  CAS  Google Scholar 

  53. de Betue CT et al (2011) Increased protein-energy intake promotes anabolism in critically ill infants with viral bronchiolitis: a double-blind randomised controlled trial. Arch Dis Child 96(9):817–822

    Article  PubMed  Google Scholar 

  54. Howley LW et al (2011) Enteral feeding in neonates with prostaglandin-dependent congenital cardiac disease: international survey on current trends and variations in practice. Cardiol Young 22(2):121–127

    Google Scholar 

  55. Natarajan G, Reddy Anne S, Aggarwal S (2010) Enteral feeding of neonates with congenital heart disease. Neonatology 98:330–336

    Article  PubMed  Google Scholar 

  56. Willis L et al (2009) Enteral feeding in prostaglandin-dependent neonates: is it a safe practice? J Pediatr 153:867–869

    Article  Google Scholar 

  57. Lucas A, Cole TJ (1990) Breast milk and neonatal necrotising enterocolitis. Lancet 336(8730):1519–1523

    Article  CAS  PubMed  Google Scholar 

  58. Cristofalo EA et al (2013) Randomized trial of exclusive human milk versus preterm formula diets in extremely premature infants. J Pediatr 163(6):1592–1595 e1

    Article  PubMed  Google Scholar 

  59. Petrillo-Albarano T et al (2006) Use of a feeding protocol to improve nutritional support through early, aggressive, enteral nutrition in the pediatric intensive care unit. Pediatr Crit Care Med 7(4):340–344

    Article  PubMed  Google Scholar 

  60. Braudis NJ et al (2009) Enteral feeding algorithm for infants with hypoplastic left heart syndrome poststage I palliation. Pediatr Crit Care Med 10:460–466

    Article  PubMed  Google Scholar 

  61. del Castillo SL et al (2010) Reducing the incidence of necrotizing enterocolitis in neonates with hypoplastic left heart syndrome with the introduction of an enteral feed protocol. Pediatr Crit Care Med 11:373–377

    PubMed  Google Scholar 

  62. Nicholson GT et al (2013) Caloric intake during the perioperative period and growth failure in infants with congenital heart disease. Pediatr Cardiol 34(2):316–321

    Article  PubMed  Google Scholar 

  63. Tume LN et al (2018) Enteral feeding practices in infants with congenital heart disease across European PICUs: a European Society of Pediatric and Neonatal Intensive Care survey. Pediatr Crit Care Med 19(2):137–144

    Article  PubMed  Google Scholar 

  64. Keshen TH et al (1997) Stable isotopic quantitation of protein metabolism and energy expenditure in neonates on- and post-extracorporeal life support. J Pediatr Surg 32(7):958–962, discussion 962–3

    Article  CAS  PubMed  Google Scholar 

  65. Shew SB et al (1999) The determinants of protein catabolism in neonates on extracorporeal membrane oxygenation. J Pediatr Surg 34(7):1086–1090

    Article  CAS  PubMed  Google Scholar 

  66. Greathouse KC et al (2018) Impact of early initiation of enteral nutrition on survival during pediatric extracorporeal membrane oxygenation. JPEN J Parenter Enteral Nutr 42(1):205–211

    CAS  PubMed  Google Scholar 

  67. Anton-Martin P et al (2018) Underweight status is an independent predictor of in-hospital mortality in pediatric patients on extracorporeal membrane oxygenation. JPEN J Parenter Enteral Nutr 42(1):104–111

    CAS  PubMed  Google Scholar 

  68. Hanekamp MN et al (2005) Routine enteral nutrition in neonates on extracorporeal membrane oxygenation. Pediatr Crit Care Med 6(3):275–279

    Article  PubMed  Google Scholar 

  69. Hanekamp MN et al (2005) Gut hormone profiles in critically ill neonates on extracorporeal membrane oxygenation. J Pediatr Gastroenterol Nutr 40:175–179

    Article  CAS  PubMed  Google Scholar 

  70. Wertheim HF et al (2001) The incidence of septic complications in newborns on extracorporeal membrane oxygenation is not affected by feeding route. J Pediatr Surg 36:1485–1489

    Article  CAS  PubMed  Google Scholar 

  71. Piena BM, Gischler S, Tibboel D (1998) Introduction of enteral feeding in neonates on ECMO after evaluation of intestinal permeability changes. J Pediatr 33:30–34

    CAS  Google Scholar 

  72. Mehta NM et al (2009) Cumulative energy imbalance in the pediatric intensive care unit: role of targeted indirect calorimetry. JPEN J Parenter Enteral Nutr 33(3):336–344

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vazquez Martinez JL et al (2004) Predicted versus measured energy expenditure by continuous, online indirect calorimetry in ventilated, critically ill children during the early postinjury period. Pediatr Crit Care Med 5(1):19–27

    Article  PubMed  Google Scholar 

  74. Hulst JM et al (2004) The effect of cumulative energy and protein deficiency on anthropometric parameters in a pediatric ICU population. Clin Nutr 23(6):1381–1389

    Article  PubMed  Google Scholar 

  75. Klein CJ, Stanek GS, Wiles CE 3rd (1998) Overfeeding macronutrients to critically ill adults: metabolic complications. J Am Diet Assoc 98(7):795–806

    Article  CAS  PubMed  Google Scholar 

  76. Branson RD, Johannigman JA (2004) The measurement of energy expenditure. Nutr Clin Pract 19(6):622–636

    Article  PubMed  Google Scholar 

  77. Haugen HA, Chan LN, Li F (2007) Indirect calorimetry: a practical guide for clinicians. Nutr Clin Pract 22(4):377–388

    Article  PubMed  Google Scholar 

  78. Anderson JB et al (2012) Variation in growth of infants with a single ventricle. J Pediatr 161(1):16–21 e1; quiz 21 e2–3

    Google Scholar 

  79. Kogon BE et al (2007) Feeding difficulty in newborns following congenital heart surgery. Congenit Heart Dis 2(5):332–337

    Article  PubMed  Google Scholar 

  80. Sables-Baus S et al (2012) Oral feeding outcomes in neonates with congenital cardiac disease undergoing cardiac surgery. Cardiol Young 22(1):42–48

    Article  PubMed  Google Scholar 

  81. Toms R et al (2015) Preoperative trophic feeds in neonates with hypoplastic left heart syndrome. Congenit Heart Dis 10(1):36–42

    Article  PubMed  Google Scholar 

  82. Williams RV et al (2011) Factors affecting growth in infants with single ventricle physiology: a report from the Pediatric Heart Network Infant Single Ventricle Trial. J Pediatr 159(6):1017–1022 e2

    Google Scholar 

  83. Anderson JB et al (2014) Use of a learning network to improve variation in interstage weight gain after the Norwood operation. Congenit Heart Dis 9(6):512–520

    Article  PubMed  Google Scholar 

  84. Einarson KD, Arthur HM (2003) Predictors of oral feeding difficulty in cardiac surgical infants. Pediatr Nurs 29(4):315–319

    PubMed  Google Scholar 

  85. Densupsoontorn NS et al (2005) Management of chylothorax and chylopericardium in pediatric patients: experiences at Siriraj Hospital, Bangkok. Asia Pac J Clin Nutr 14(2):182–187

    PubMed  Google Scholar 

  86. Kocel SL, Russell J, O'Connor DL (2016) Fat-modified breast milk resolves chylous pleural effusion in infants with postsurgical chylothorax but is associated with slow growth. JPEN J Parenter Enteral Nutr 40(4):543–551

    Article  CAS  PubMed  Google Scholar 

  87. Hofner G et al (2000) Enteral nutritional support by percutaneous endoscopic gastrostomy in children with congenital heart disease. Pediatr Cardiol 21(4):341–346

    Article  CAS  PubMed  Google Scholar 

  88. Netto R et al (2017) Parenteral nutrition is one of the most significant risk factors for nosocomial infections in a pediatric cardiac intensive care unit. JPEN J Parenter Enteral Nutr 41(4):612–618

    Article  PubMed  Google Scholar 

  89. Fivez T et al (2016) Early versus late parenteral nutrition in critically ill children. N Engl J Med 374(12):1111–1122

    Article  CAS  PubMed  Google Scholar 

  90. Becker PJ et al (2014) Consensus statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: indicators recommended for the identification and documentation of pediatric malnutrition (undernutrition). J Acad Nutr Diet 114(12):1988–2000

    Article  PubMed  Google Scholar 

  91. WHO (2006) WHO child growth standards. Cited 2010. Available from: http://www.who.int/childgrowth/standards/technical_report/en/index.html

  92. Grummer-Strawn LM, Reinold C, Krebs NF (2010) Use of World Health Organization and CDC growth charts for children aged 0–59 months in the United States. Ctr Dis Control Prev 59(RR-9):1–15

    Google Scholar 

  93. Saarela T, Kokkonen J, Koivisto M (2005) Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr 94(9):1176–1181

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyagarnt E. Vichayavilas .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vichayavilas, P.E., Skillman, H.E., Krebs, N.F. (2021). Nutrition in Congenital Heart Disease: Challenges, Guidelines, and Nutritional Support. In: da Cruz, E.M., Ivy, D., Hraska, V., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4999-6_164-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4999-6_164-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4999-6

  • Online ISBN: 978-1-4471-4999-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics