Skip to main content

Controversies in Our Current Decade Surrounding the Management of the Adult with Congenital Heart Disease

  • Living reference work entry
  • First Online:
Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care

Abstract

Heart defects occur in 75 of 1000 live births, 25% of which are at least moderate in severity. Less than 33% of infants born with congenital heart disease 50 years ago survived to adulthood. With current advances in pediatric cardiology and surgery, it is now estimated in developed countries that up to 95% are expected to reach adulthood. As life expectancy improves, the population of adults with congenital heart disease continues to grow. It is now estimated that the number of adults with congenital heart disease has surpassed the number of children with congenital heart disease. While this is a remarkable achievement in the field of medicine, it is now apparent that early surgical interventions were reparative, and not curative. Adults with congenital heart disease are increasingly requiring medical services and late complications are becoming increasingly apparent. As result, healthcare systems are now challenged to meet the demands of this complex and largely underserved population. This chapter discusses and highlights some of the important advances and controversies in the modern era in the management of the adult with congenital heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Shimazaki Y, Blackstone EH, Kirklin JW (1984) The natural history of isolated congenital pulmonary valve incompetence: surgical implications. Thorac Cardiovasc Surg 32(4):257–259

    Article  CAS  PubMed  Google Scholar 

  2. Bouzas B, Kilner PJ, Gatzoulis MA (2005) Pulmonary regurgitation: not a benign lesion. Eur Heart J 26(5):433–439

    Article  PubMed  Google Scholar 

  3. Geva T (2006) Indications and timing of pulmonary valve replacement after tetralogy of Fallot repair. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 9(1):11–22

    Google Scholar 

  4. Gatzoulis MA et al (2000) Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet 356(9234):975–981

    Article  CAS  PubMed  Google Scholar 

  5. Frigiola A et al (2004) Pulmonary regurgitation is an important determinant of right ventricular contractile dysfunction in patients with surgically repaired tetralogy of Fallot. Circulation 110(11 Suppl 1):Ii153–Ii157

    CAS  PubMed  Google Scholar 

  6. Carvalho JS et al (1992) Exercise capacity after complete repair of tetralogy of Fallot: deleterious effects of residual pulmonary regurgitation. Br Heart J 67(6):470–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gatzoulis MA et al (1995) Mechanoelectrical interaction in tetralogy of Fallot. QRS prolongation relates to right ventricular size and predicts malignant ventricular arrhythmias and sudden death. Circulation 92(2):231–237

    Article  CAS  PubMed  Google Scholar 

  8. Oechslin EN et al (1999) Reoperation in adults with repair of tetralogy of Fallot: indications and outcomes. J Thorac Cardiovasc Surg 118(2):245–251

    Article  CAS  PubMed  Google Scholar 

  9. Gengsakul A et al (2007) The impact of pulmonary valve replacement after tetralogy of Fallot repair: a matched comparison. Eur J Cardiothorac Surg 32(3):462–468

    Article  PubMed  Google Scholar 

  10. Frigiola A et al (2008) Biventricular response after pulmonary valve replacement for right ventricular outflow tract dysfunction: is age a predictor of outcome? Circulation 118(14 Suppl):S182–S190

    PubMed  Google Scholar 

  11. Therrien J et al (2001) Impact of pulmonary valve replacement on arrhythmia propensity late after repair of tetralogy of Fallot. Circulation 103(20):2489–2494

    Article  CAS  PubMed  Google Scholar 

  12. van der Wall EE, Mulder BJ (2005) Pulmonary valve replacement in patients with tetralogy of Fallot and pulmonary regurgitation: early surgery similar to optimal timing of surgery? Eur Heart J 26(24):2614–2615

    Article  PubMed  Google Scholar 

  13. Walsh R et al (2011) Repeatability of cardiac-MRI-measured right ventricular size and function in congenital heart disease. Pediatr Radiol 41(8):1000–1007

    Article  PubMed  Google Scholar 

  14. Therrien J et al (2005) Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol 95(6):779–782

    Article  PubMed  Google Scholar 

  15. Buechel ER et al (2005) Remodelling of the right ventricle after early pulmonary valve replacement in children with repaired tetralogy of Fallot: assessment by cardiovascular magnetic resonance. Eur Heart J 26(24):2721–2727

    Article  PubMed  Google Scholar 

  16. Heng EL et al (2017) Immediate and midterm cardiac remodeling after surgical pulmonary valve replacement in adults with repaired tetralogy of Fallot: a prospective cardiovascular magnetic resonance and clinical study. Circulation 136(18):1703–1713

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oosterhof T et al (2007) Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation 116(5):545–551

    Article  PubMed  Google Scholar 

  18. Khambadkone S et al (2005) Percutaneous pulmonary valve implantation in humans: results in 59 consecutive patients. Circulation 112(8):1189–1197

    Article  PubMed  Google Scholar 

  19. Fathallah M, Krasuski RA (2017) Pulmonic valve disease: review of pathology and current treatment options. Curr Cardiol Rep 19(11):108

    Article  PubMed  Google Scholar 

  20. Balzer D (2019) Pulmonary valve replacement for tetralogy of Fallot. Methodist Debakey Cardiovasc J 15(2):122–132

    Article  PubMed  PubMed Central  Google Scholar 

  21. Giugno L, Faccini A, Carminati M (2020) Percutaneous pulmonary valve implantation. Korean Circ J 50(4):302–316

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lurz P et al (2008) Percutaneous pulmonary valve implantation: impact of evolving technology and learning curve on clinical outcome. Circulation 117(15):1964–1972

    Article  PubMed  Google Scholar 

  23. McElhinney DB et al (2010) Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US melody valve trial. Circulation 122(5):507–516

    Article  PubMed  PubMed Central  Google Scholar 

  24. Eicken A et al (2011) Percutaneous pulmonary valve implantation: two-centre experience with more than 100 patients. Eur Heart J 32(10):1260–1265

    Article  PubMed  Google Scholar 

  25. Kenny D et al (2011) Percutaneous implantation of the Edwards SAPIEN transcatheter heart valve for conduit failure in the pulmonary position: early phase 1 results from an international multicenter clinical trial. J Am Coll Cardiol 58(21):2248–2256

    Article  PubMed  Google Scholar 

  26. Zhou Y et al (2019) Clinical outcomes of transcatheter versus surgical pulmonary valve replacement: a meta-analysis. J Thorac Dis 11(12):5343–5351

    Article  PubMed  PubMed Central  Google Scholar 

  27. Plymen CM et al (2011) Electrical remodeling following percutaneous pulmonary valve implantation. Am J Cardiol 107(2):309–314

    Article  PubMed  Google Scholar 

  28. Ross DN (1967) Replacement of aortic and mitral valves with a pulmonary autograft. Lancet 2(7523):956–958

    Article  CAS  PubMed  Google Scholar 

  29. Yacoub MH (2006) The Ross operation – an evolutionary tale. Asian Cardiovasc Thorac Ann 14(1):1–2

    Article  PubMed  Google Scholar 

  30. Mazine A et al (2018) Ross procedure in adults for cardiologists and cardiac surgeons: JACC state-of-the-art review. J Am Coll Cardiol 72(22):2761–2777

    Article  PubMed  Google Scholar 

  31. Reece TB et al (2014) Rethinking the ross procedure in adults. Ann Thorac Surg 97(1):175–181

    Article  PubMed  Google Scholar 

  32. Rabkin-Aikawa E et al (2004) Clinical pulmonary autograft valves: pathologic evidence of adaptive remodeling in the aortic site. J Thorac Cardiovasc Surg 128(4):552–561

    Article  PubMed  Google Scholar 

  33. Elkins RC (1999) The Ross operation: a 12-year experience. Ann Thorac Surg 68(3 Suppl):S14–S18

    Article  CAS  PubMed  Google Scholar 

  34. Martin E et al (2017) Clinical outcomes following the Ross procedure in adults: a 25-year longitudinal study. J Am Coll Cardiol 70(15):1890–1899

    Article  PubMed  Google Scholar 

  35. Sievers H et al (2003) Midterm results of the Ross procedure preserving the patient’s aortic root. Circulation 108(Suppl 1):Ii55–Ii60

    PubMed  Google Scholar 

  36. David TE et al (2014) The Ross procedure: outcomes at 20 years. J Thorac Cardiovasc Surg 147(1):85–93

    Article  PubMed  Google Scholar 

  37. Buratto E et al (2018) Improved survival after the Ross procedure compared with mechanical aortic valve replacement. J Am Coll Cardiol 71(12):1337–1344

    Article  PubMed  Google Scholar 

  38. Pasquali SK et al (2007) The relationship between neo-aortic root dilation, insufficiency, and reintervention following the Ross procedure in infants, children, and young adults. J Am Coll Cardiol 49(17):1806–1812

    Article  PubMed  Google Scholar 

  39. Luciani GB, Mazzucco A (2006) Aortic root disease after the Ross procedure. Curr Opin Cardiol 21(6):555–560

    Article  PubMed  Google Scholar 

  40. Venkataraman R et al (2009) Late dissection of pulmonary autograft treated by valve-sparing aortic root replacement. J Card Surg 24(4):443–445

    Article  PubMed  Google Scholar 

  41. Jacobsen RM et al (2015) The externally supported Ross operation: early outcomes and intermediate follow-up. Ann Thorac Surg 100(2):631–638

    Article  PubMed  Google Scholar 

  42. Luciani GB et al (2003) Fate of the aortic root late after Ross operation. Circulation 108(Suppl 1):Ii61–Ii67

    PubMed  Google Scholar 

  43. Zimmermann CA et al (2016) Dilatation and dysfunction of the neo-aortic root and in 76 patients after the Ross procedure. Pediatr Cardiol 37(6):1175–1183

    Article  PubMed  Google Scholar 

  44. Peeters G et al (2019) Acute type a dissection 18 years after a Ross operation: the old prejudice. Ann Thorac Surg 107(4):e255–e257

    Article  PubMed  Google Scholar 

  45. Sharifulin R et al (2019) Factors impacting long-term pulmonary autograft durability after the Ross procedure. J Thorac Cardiovasc Surg 157(1):134–141.e3

    Article  PubMed  Google Scholar 

  46. Sievers HH et al (2018) Valve performance classification in 630 subcoronary Ross patients over 22 years. J Thorac Cardiovasc Surg 156(1):79–86.e2

    Article  PubMed  Google Scholar 

  47. El-Hamamsy I et al (2010) Long-term outcomes after autograft versus homograft aortic root replacement in adults with aortic valve disease: a randomised controlled trial. Lancet 376(9740):524–531

    Article  PubMed  Google Scholar 

  48. Sievers HH et al (2016) A multicentre evaluation of the autograft procedure for young patients undergoing aortic valve replacement: update on the German Ross registry†. Eur J Cardiothorac Surg 49(1):212–218

    Article  PubMed  Google Scholar 

  49. Kouchoukos NT et al (2004) The Ross procedure: long-term clinical and echocardiographic follow-up. Ann Thorac Surg 78(3):773–781. discussion 773-81

    Article  PubMed  Google Scholar 

  50. Sharabiani MT et al (2016) Aortic valve replacement and the Ross operation in children and young adults. J Am Coll Cardiol 67(24):2858–2870

    Article  PubMed  Google Scholar 

  51. Dijkema EJ, Leiner T, Grotenhuis HB (2017) Diagnosis, imaging and clinical management of aortic coarctation. Heart 103(15):1148–1155

    Article  PubMed  Google Scholar 

  52. Nguyen L, Cook SC (2015) Coarctation of the aorta: strategies for improving outcomes. Cardiol Clin 33(4):521–530. vii

    Article  PubMed  Google Scholar 

  53. Crafoord C, Nylin G (1945) Congenital coarctation of the aorta and its surgical treatment. J Thoracic Surg 14(5):347–361

    Article  Google Scholar 

  54. Rothman A (1998) Coarctation of the aorta: an update. Curr Probl Pediatr 28(2):33–60

    CAS  PubMed  Google Scholar 

  55. Oster ME et al (2019) Long-term survival of patients with coarctation repaired during infancy (from the pediatric cardiac care consortium). Am J Cardiol 124(5):795–802

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pillutla P, Shetty KD, Foster E (2009) Mortality associated with adult congenital heart disease: trends in the US population from 1979 to 2005. Am Heart J 158(5):874–879

    Article  PubMed  Google Scholar 

  57. Cho S et al (2020) Outcomes of aortic coarctation surgical repair in adolescents and adults. Interact Cardiovasc Thorac Surg 30(6):925–931

    Article  PubMed  Google Scholar 

  58. Rajbanshi BG et al (2019) Primary surgical repair of coarctation of the aorta in adolescents and adults: intermediate results and consequences of hypertension. Eur J Cardiothorac Surg 55(2):323–330

    Article  PubMed  Google Scholar 

  59. Bambul Heck P et al (2018) Quality of life after surgical treatment of coarctation in long-term follow-up (CoAFU): predictive value of clinical variables. Int J Cardiol 250:116–119

    Article  PubMed  Google Scholar 

  60. Chan A, Aijaz A, Zaidi AN (2020) Surgical outcomes in complex adult congenital heart disease: a brief review. J Thorac Dis 12(3):1224–1234

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pedersen TA, Røpcke DM, Hjortdal VE (2011) Functional health status late after surgical correction of aortic coarctation. Congenit Heart Dis 6(6):566–572

    Article  PubMed  Google Scholar 

  62. Singer MI, Rowen M, Dorsey TJ (1982) Transluminal aortic balloon angioplasty for coarctation of the aorta in the newborn. Am Heart J 103(1):131–132

    Article  CAS  PubMed  Google Scholar 

  63. Shaddy RE et al (1993) Comparison of angioplasty and surgery for unoperated coarctation of the aorta. Circulation 87(3):793–799

    Article  CAS  PubMed  Google Scholar 

  64. Holzer R et al (2010) Stenting of aortic coarctation: acute, intermediate, and long-term results of a prospective multi-institutional registry – Congenital Cardiovascular Interventional Study Consortium (CCISC). Catheter Cardiovasc Interv 76(4):553–563

    Article  PubMed  Google Scholar 

  65. Forbes TJ et al (2011) Comparison of surgical, stent, and balloon angioplasty treatment of native coarctation of the aorta: an observational study by the CCISC (Congenital Cardiovascular Interventional Study Consortium). J Am Coll Cardiol 58(25):2664–2674

    Article  PubMed  Google Scholar 

  66. Meadows J et al (2015) Intermediate outcomes in the prospective, Multicenter Coarctation of the Aorta Stent Trial (COAST). Circulation 131(19):1656–1664

    Article  PubMed  Google Scholar 

  67. Cribbs MG et al (2012) From balloon angioplasty to covered stents in the management of coarctation of the aorta in adults with congenital heart disease. Prog Pediatr Cardiol 34(2):97–103

    Article  Google Scholar 

  68. Sasikumar D et al (2020) Early and late outcome of covered and non-covered stents in the treatment of coarctation of aorta- a single centre experience. Indian Heart J 72(4):278–282

    Article  PubMed  PubMed Central  Google Scholar 

  69. Taggart NW et al (2016) Immediate outcomes of covered stent placement for treatment or prevention of Aortic wall injury associated with coarctation of the aorta (COAST II). JACC Cardiovasc Interv 9(5):484–493

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Cohen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kimber, J., Bartz, P., Earing, M.G., Shah, T., Cohen, S. (2023). Controversies in Our Current Decade Surrounding the Management of the Adult with Congenital Heart Disease. In: da Cruz, E.M., Ivy, D., Hraska, V., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4999-6_180-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4999-6_180-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4999-6

  • Online ISBN: 978-1-4471-4999-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics