Skip to main content

Surface Modification of Semiconductor by Simultaneous Thermal Oxidation and Nitridation

  • Living reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

Integration of high-quality functional thin layer of oxides on semiconductor, in particular wide-bandgap silicon carbide, is of extreme importance in order to realize near future generation of metal-oxide-semiconductor (MOS)-based devices for high-power, high-temperature, and/or high-radiation applications. Although nitrided SiO2 on SiC produced acceptable results, limitations and issues have been reported. Therefore, evolution and justification of changing this type of oxide to high dielectric constant oxide (high-κ) on SiC are being reviewed. This chapter presents the current understanding of simultaneous thermal oxidation and nitridation of sputtered Zr-semiconductor interfaces as the most promising technique for achieving device-quality interfaces required for commercial applications. It is mainly focused on the technological methods of producing oxidized/nitrided Zr on SiC. An exceptional section is devoted to the recent developments of nitrided high-κ gate dielectrics on SiC. It starts with a detailed discussion of high-κ gate dielectric characteristics and the current knowledge of simultaneously oxidized and nitrided Zr film as high-κ dielectric on SiC. Via this technique, the role of N2O gas ambient on oxidizing and nitriding Zr film on SiC, coupling with physical and electric characteristics of oxidized/nitrided Zr film on SiC, is discussed. A growth mechanism of simultaneous thermal oxidation and nitridation of Zr film on SiC is subsequently presented. Finally, the properties of oxidized/nitrided Zr thin films based on Si and SiC substrates are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Afanas’ev VV, Ciobanu F, Pensl G, Stesmans A (2004) Contributions to the density of interface states in SiC MOS structures. In: Choyke WJ, Matsunami H, Pensl G (eds) Silicon carbide – recent major advances. Springer, Berlin, pp 343–372

    Chapter  Google Scholar 

  • Ben Amor S, Rogier B, Baud G, Jacquet M, Nardin M (1998) Characterization of zirconia films deposited by r.f. magnetron sputtering. Mater Sci Eng B 57:28–39

    Article  Google Scholar 

  • Boer KW (2002) Survey of semiconductor physics, 2nd edn. Wiley, New York, pp 20–28

    Google Scholar 

  • Casady JB, Johnson RW (1996) Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Electron 39:1409–1422

    Article  Google Scholar 

  • Chaneliere C, Autran JL, Devine RAB, Balland B (1998) Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater Sci Eng R 22:269–322

    Article  Google Scholar 

  • Chen L-M, Lai Y-S, Chen JS (2007) Influence of pre-deposition treatments on the interfacial and electrical characteristics of ZrO2 gate dielectrics. Thin Solid Films 515:3724–3729

    Article  Google Scholar 

  • Chen Q, Feng YP, Chai JW, Zhang Z, Pan JS, Wang SJ (2010) In situ X-ray photoelectron spectroscopy studies of HfO2 gate dielectric on SiC. Thin Solid Films 518:e31–e33

    Article  Google Scholar 

  • Cheong KY, Dimitrijev S, Han J, Harrison HB (2003) Electrical and physical characterization of gate oxides on 4H-SiC grown in diluted N2O. J Appl Phys 93:5682–5686

    Article  Google Scholar 

  • Cheong KY, Bahng W, Kim N-K (2007) Effects of thermal nitrided gate-oxide thickness on 4H silicon-carbide-based metal-oxide-semiconductor characteristics. Appl Phys Lett 90:012120

    Article  Google Scholar 

  • Cheong KY, Moon JH, Kim HJ, Bahng W, Kim N-K (2008a) Current conduction mechanisms in atomic-layer-deposited HfO2/nitrided SiO2 stacked gate on 4H silicon carbide. J Appl Phys 103:084113–084118

    Article  Google Scholar 

  • Cheong KY, Bahng W, Kim N-K (2008b) Analysis of charge conduction mechanisms in nitrided SiO2 Film on 4H SiC. Phys Lett A 372:529–532

    Article  Google Scholar 

  • Cheong KY, Moon J, Kim HJ, Bahng W, Kim N-K (2010) Metal-oxide-semiconductor characteristics of thermally grown nitrided SiO2 thin film on 4H-SiC in various N2O ambient. Thin Solid Films 518:3255–3259

    Article  Google Scholar 

  • Choi HS, Seol KS, Kim DY, Kwak JS, Son C-S, Choi I-H (2005) Thermal treatment effects on interfacial layer formation between ZrO2 thin films and Si substrates. Vacuum 80:310–316

    Article  Google Scholar 

  • Choi JH, Mao Y, Chang JP (2011) Development of hafnium based high-k materials – a review. Mater Sci Eng R Rep 72:97–136

    Article  Google Scholar 

  • Choyke WJ, Matsunami H, Pensl G (2004) Silicon carbide – recent major advances. Springer, Berlin, pp 343–372, 373–386, 785–812

    Book  Google Scholar 

  • Conard T, Bender H, Vandervorst W (2007) Physical characterization of ultra-thin high-k dielectric. In: Baklanov M, Green M, Maex K (eds) Dielectric films for advanced microelectronics. Wiley, New York

    Google Scholar 

  • de Almeida RMC, Baumvol IJR (2003) Reaction-diffusion in high-k dielectrics on Si. Surf Sci Rep 49:1–114

    Article  Google Scholar 

  • Dimitrijev S, Harisson HB, Tanner P, Cheong KY, Han J (2004) Properties of nitrided oxides on SiC. In: Choyke WJ, Matsunami H, Pensl G (eds) Silicon carbide – recent major advances. Springer, Berlin, pp 373–386

    Chapter  Google Scholar 

  • Dwbrowski J, Mussig H-J (2000) Silicon surfaces and formation of interfaces. World Scientific, River Edge

    Book  Google Scholar 

  • Enta Y, Suto K, Takeda S, Kato H, Sakisaka Y (2006) Oxynitridation of Si(100) surface with thermally excited N2O gas. Thin Solid Films 500:129–132

    Article  Google Scholar 

  • Gupta A, Toby S, Gusev EP, Lu HC, Li Y, Green ML, Gustafsson T, Garfunkel E (1998) Nitrous oxide gas phase chemistry during silicon oxynitride film growth. Prog Surf Sci 59:103–115

    Article  Google Scholar 

  • He B, Hoilien N, Smith R, Ma T, Taylor C, St. Omer I, Campbell SA, Gladfelter WL, Gribelyuk M, Buchanan D (1999) High permittivity gate insulators TiO2 and ZrO2. In: Proceedings of the 13th biennial university/government/industry microelectronics symposium, pp 33–36

    Google Scholar 

  • He G, Fang Q, Zhang JX, Zhu LQ, Liu M, Zhang LD (2005) Structural, interfacial and optical characterization of ultrathin zirconia film grown by in situ thermal oxidation of sputtered metallic Zr films. Nanotechnology 16:1641

    Article  Google Scholar 

  • Hembram KPSS, Dutta G, Waghmare UV, Mohan Rao G (2007) Electrical and structural properties of zirconia thin films prepared by reactive magnetron sputtering. Phys B Condens Matter 399:21–26

    Article  Google Scholar 

  • International Technology Roadmap for Semiconductors (ITRS) (2011) http://www.itrs.net. Accessed 10 Apr 2012

  • Jamet P, Dimitrijev S (2001) Physical properties of N2O and NO-nitrided gate oxides grown on 4H SiC. Appl Phys Lett 79:323–325

    Article  Google Scholar 

  • Jamet P, Dimitrijev S, Tanner P (2001) Effects of nitridation in gate oxides grown on 4H-SiC. J Appl Phys 90:5058–5063

    Article  Google Scholar 

  • Kurniawan T, Wong YH, Cheong KY, Moon JH, Bahng W, Abdul Razak K, Lockman Z, Joon Kim H, Kim N-K (2011) Effects of post-oxidation annealing temperature on ZrO2 thin film deposited on 4H-SiC substrate. Mater Sci Semicond Process 14:13–17

    Article  Google Scholar 

  • Lim WF, Cheong KY, Lockman Z (2010) Physical characterization of post-deposition annealed metal-organic decomposed cerium oxide film spin-coated on 4H-silicon carbide. J Alloys Compd 497:195–200

    Article  Google Scholar 

  • Lin YS, Puthenkovilakam R, Chang JP, Bouldin C, Levin I, Nguyen NV, Ehrstein J, Sun Y, Pianetta P, Conard T, Vandervorst W, Venturo V, Selbrede S (2003) Interfacial properties of ZrO2 on silicon. J Appl Phys 93:5945–5952

    Article  Google Scholar 

  • Lipkin LA, Palmour JW (1999) Insulator investigation on SiC for improved reliability. IEEE Trans Electron Device 46:525–532

    Article  Google Scholar 

  • Miller TM, Grassian VH (1997) A mechanistic study of nitrous oxide adsorption and decomposition on zirconia. Catal Lett 46:213–221. doi:10.1023/a:1019058232683

    Article  Google Scholar 

  • Mohapatra NR, Desai MP, Narendra SG, Rao VR (2002) The effect of high-K gate dielectrics on deep submicrometer CMOS device and circuit performance. IEEE Trans Electron Device 49:826–831

    Article  Google Scholar 

  • Ngaruiya JM, Kappertz O, Liesch C, Müller P, Dronskowski R, Wuttig M (2004) Composition and formation mechanism of zirconium oxynitride films produced by reactive direct current magnetron sputtering. Phys Status Sol (A) 201:967–976. doi:10.1002/pssa.200306774

    Article  Google Scholar 

  • Nigro RL, Toro RG, Malandrino G, Fragala IL, Raineri V, Fiorenza P (2006) Praseodymium based high-k dielectrics grown on Si and SiC substrates. Mater Sci Semicond Process 9:1073–1078

    Article  Google Scholar 

  • Petrucci RH, Harwood WS, Herring FG (2002) Spontaneous change: entropy and free energy, Chapter 20. In: General chemistry: principles and modern applications. Prentice Hall, Upper Saddle River, p 795

    Google Scholar 

  • Reddy GLN, Ramana JV, Kumar S, Kumar SV, Raju VS (2007) Investigations on the oxidation of zirconium nitride films in air by nuclear reaction analysis and backscattering spectrometry. Appl Surf Sci 253:7230–7237

    Article  Google Scholar 

  • Robertson J (2004) High dielectric constant oxides. Eur Phys J Appl Phys 28:265–291

    Article  Google Scholar 

  • Robertson J, Peacock PW (2004) Atomic structure, band offsets, growth and defects at high-K oxide: Si interfaces. Microelectron Eng 72:112–120

    Article  Google Scholar 

  • Schroder DK (2006) Semiconductor material and device characterization, 3rd edn. Wiley, New York

    Google Scholar 

  • Wilk GD, Wallace RM, Anthony JM (2001a) High-κ gate dielectrics: current status and materials properties considerations. J Appl Phys 89:5243–5275

    Article  Google Scholar 

  • Wilk GD, Wallace RM, Anthony JM (2001b) High-κ gate dielectrics: current status and materials properties considerations. J Appl Phys 89:5243–5275

    Article  Google Scholar 

  • Wong YH, Cheong KY (2010) ZrO2 thin films on Si substrate. J Mater Sci Mater Electron 21:980–993. doi:10.1007/s10854-010-0144-5

    Article  Google Scholar 

  • Wong YH, Cheong KY (2011a) Thermal oxidation and nitridation of sputtered Zr thin film on Si via N2O gas. J Alloys Compd 509:8728–8737

    Article  Google Scholar 

  • Wong YH, Cheong KY (2011b) Electrical characteristics of oxidized/nitrided Zr thin film on Si. J Electrochem Soc 158:H1270–H1278

    Article  Google Scholar 

  • Wong YH, Cheong KY (2011c) Band alignment and enhanced breakdown field of simultaneously oxidized and nitrided Zr film on Si. Nanoscale Res Lett 6:489

    Article  Google Scholar 

  • Wong YH, Cheong KY (2011) Formation of Zr-oxynitride thin films on 4H-SiC substrate. Thin Solid Films 520:6822–6829

    Article  Google Scholar 

  • Wong YH, Cheong KY (2012a) Metal-oxide-semiconductor characteristics of Zr-oxynitride thin film on 4H-SiC substrate. J Electrochem Soc 159:H293–H299

    Article  Google Scholar 

  • Wong YH, Cheong KY (2012b) Metal-oxide-semiconductor characteristics of Zr-oxynitride thin film on 4H-SiC substrate. J Electrochem Soc 159:H293–H299

    Article  Google Scholar 

  • Wong YH, Cheong KY (2012c) Effects of oxidation and nitridation temperatures on electrical properties of sputtered Zr thin film based on Si in N2O ambient. Electron Mater Lett 8:47–51. doi:10.1007/s13391-011-1067-x

    Article  Google Scholar 

  • Wong H, Iwai H (2006) On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectron Eng 83:1867–1904

    Article  Google Scholar 

  • Zant PV (2004) Microchip fabrication, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Zhu J, Albertsma S, van Ommen JG, Lefferts L (2005) Role of surface defects in activation of O2 and N2O on ZrO2 and yttrium-stabilized ZrO2. J Phys Chem B 109:9550–9555. doi:10.1021/jp050258h

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan Yew Cheong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Cheong, K.Y., Wong, Y.H. (2014). Surface Modification of Semiconductor by Simultaneous Thermal Oxidation and Nitridation. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4976-7_47-6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4976-7_47-6

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-4976-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics