Skip to main content

Microvascular Coronary Dysfunction Post–Myocardial Revascularization

  • Chapter
  • First Online:
Chest Pain with Normal Coronary Arteries

Abstract

Subcellular events that occur during the ischemic phase and after the restoration of coronary blood flow in patients with myocardial infarction are key factors responsible for the development of post revascularization microvascular coronary dysfunction. Indeed, ischemia-reperfusion injury has been recognized to attenuate the benefits of coronary revascularization in ACS. Clinically, ischemia-reperfusion injury can be manifested as the no-reflow phenomenon. In the following section ischemia-reperfusion injury and the no-reflow phenomenon are discussed with special attention to pathogenesis, prognostic information and diagnoses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;12(8):933–44.

    Article  Google Scholar 

  2. Stone GW, Dixon SR, Grines CL, et al. Predictors of infarct size after primary coronary angioplasty in acute myocardial infarction from pooled analysis from four contemporary trials. Am J Cardiol. 2007;100(9):1370–5.

    Article  PubMed  Google Scholar 

  3. Brodie BR, Webb J, Cox DA, et al. Impact of time to treatment on myocardial reperfusion and infarct size with primary percutaneous coronary intervention for acute myocardial infarction (from the EMERALD trial). Am J Cardiol. 2007;99(12):1680–6.

    Article  PubMed  Google Scholar 

  4. Jennings RB, Sommers HM, Smyth GA, et al. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960;70:68–78.

    PubMed  CAS  Google Scholar 

  5. Tsao PS, Aoki N, Lefer DJ, et al. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation. 1990;82(4):1402–12.

    Article  PubMed  CAS  Google Scholar 

  6. Tsao PS, Lefer AM. Time course and mechanism of endothelial dysfunction in isolated ischemic- and hypoxic-perfused rat hearts. Am J Physiol. 1990;259(6 Pt 2):H1660–6.

    PubMed  CAS  Google Scholar 

  7. Lefer AM, Lefer DJ. The role of nitric oxide and cell adhesion molecules on the microcirculation in ischaemia-reperfusion. Cardiovasc Res. 1996;32(4):743–51.

    PubMed  CAS  Google Scholar 

  8. Ma XL, Weyrich AS, Lefer DJ, et al. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes ­neutrophil adherence to coronary endothelium. Circ Res. 1993;72(2):403–12.

    Article  PubMed  CAS  Google Scholar 

  9. Yellon DM, Alkhulaifi AM, Pugsley WB. Preconditioning the human myocardium. Lancet. 1993;342(8866):276–7.

    Article  PubMed  CAS  Google Scholar 

  10. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285(2):H579–88.

    PubMed  CAS  Google Scholar 

  11. Marzilli M, Orsini E, Marraccini P, et al. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Circulation. 2000;101(18):2154–9.

    Article  PubMed  CAS  Google Scholar 

  12. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res. 2004;61(3):448–60.

    Article  PubMed  CAS  Google Scholar 

  13. Halestrap AP. The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury. Biochem Soc Symp. 1999;66:181–203.

    PubMed  CAS  Google Scholar 

  14. Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J. 1995;307(Pt 1):93–8.

    PubMed  CAS  Google Scholar 

  15. Zhao ZQ, Morris CD, Budde JM, et al. Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion. Cardiovasc Res. 2003;59(1):132–42.

    Article  PubMed  CAS  Google Scholar 

  16. Yellon DM, Baxter GF. Reperfusion injury revisited: is there a role for growth factor signaling in limiting lethal reperfusion injury? Trends Cardiovasc Med. 1999;9(8):245–9.

    Article  PubMed  CAS  Google Scholar 

  17. Bell RM, Yellon DM. There is more to life than revascularization: therapeutic targeting of myocardial ischemia/reperfusion injury. Cardiovasc Ther. 2011;29(6):e67–79.

    Article  PubMed  Google Scholar 

  18. Hausenloy DJ, Yellon DM. The therapeutic potential of ischemic conditioning: an update. Nat Rev Cardiol. 2011;8(11):619–29.

    Article  PubMed  CAS  Google Scholar 

  19. Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54(6):1496–508.

    Article  PubMed  CAS  Google Scholar 

  20. Ito H. No-reflow phenomenon and prognosis in patients with acute myocardial infarction. Nat Clin Pract Cardiovasc Med. 2006;3(9):499–506.

    Article  PubMed  Google Scholar 

  21. Kloner RA. No-reflow phenomenon: maintaining vascular integrity. J Cardiovasc Pharmacol Ther. 2011;16(3–4):244–50.

    Article  PubMed  Google Scholar 

  22. Schwartz BG, Kloner RA. Coronary no reflow. J Mol Cell Cardiol. 2012;52(4):873–82.

    Article  PubMed  CAS  Google Scholar 

  23. Vrints CJ. Pathophysiology of the no-reflow phenomenon. Acute Card Care. 2009;11(2):69–76.

    Article  PubMed  Google Scholar 

  24. Dong-bao L, Qi H, Zhi L, et al. Predictors and long-term prognosis of angiographic slow/no-reflow phenomenon during emergency percutaneous coronary intervention for ST-elevated acute myocardial infarction. Clin Cardiol. 2010;33(12):E7–12.

    Article  PubMed  Google Scholar 

  25. Morishima I, Sone T, Okumura K, et al. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol. 2000;36(4):1202–9.

    Article  PubMed  CAS  Google Scholar 

  26. Jaffe R, Dick A, Strauss BH. Prevention and treatment of microvascular obstruction-related myocardial injury and coronary no-reflow following percutaneous coronary intervention: a systematic approach. JACC Cardiovasc Interv. 2010;3(7):695–704.

    Article  PubMed  Google Scholar 

  27. Fokkema ML, Vlaar PJ, Svilaas T, et al. Incidence and clinical consequences of distal embolization on the coronary angiogram after percutaneous coronary intervention for ST-elevation myocardial infarction. Eur Heart J. 2009;30(8):908–15.

    Article  PubMed  Google Scholar 

  28. Henriques JP, Zijlstra F, Ottervanger JP, et al. Incidence and clinical significance of distal embolization during primary angioplasty for acute myocardial infarction. Eur Heart J. 2002;23(14):1112–7.

    Article  PubMed  CAS  Google Scholar 

  29. Niccoli G, Cosentino N, Lombardo A, et al. Angiographic patterns of myocardial reperfusion after primary angioplasty and ventricular remodeling. Coron Artery Dis. 2011;22(7):507–14.

    PubMed  Google Scholar 

  30. Tartan Z, Ozer N, Uyarel H, et al. Metabolic syndrome is a predictor for an ECG sign of no-reflow after primary PCI in patients with acute ST-elevation myocardial infarction. Nutr Metab Cardiovasc Dis. 2008;18(6):441–7.

    Article  PubMed  Google Scholar 

  31. Celik T, Iyisoy A. Impact of metabolic syndrome on no-reflow after primary percutaneous coronary intervention in patients with acute ST elevation myocardial infarction. Nutr Metab Cardiovasc Dis. 2008;18(5):e21–2.

    Article  PubMed  Google Scholar 

  32. Zijlstra F, van der Horst IC, Van’t Hof AW, et al. Hyperglycemia and no-reflow phenomenon in acute myocardial infarction. J Am Coll Cardiol. 2003;41(12):2300; author reply 2300.

    Article  PubMed  Google Scholar 

  33. Zhao JL, Yang YJ, Pei WD, et al. The effect of statins on the no-reflow phenomenon: an observational study in patients with hyperglycemia before primary angioplasty. Am J Cardiovasc Drugs. 2009;9(2):81–9.

    Article  PubMed  CAS  Google Scholar 

  34. Iwakura K, Ito H, Kawano S, et al. Chronic pre-treatment of statins is associated with the reduction of the no-reflow phenomenon in the patients with reperfused acute myocardial infarction. Eur Heart J. 2006;27(5):534–9.

    Article  PubMed  CAS  Google Scholar 

  35. Jesel L, Morel O, Ohlmann P, et al. Role of pre-infarction angina and inflammatory status in the extent of microvascular obstruction detected by MRI in myocardial infarction patients treated by PCI. Int J Cardiol. 2007;121(2):139–47.

    Article  PubMed  CAS  Google Scholar 

  36. Iwakura K, Ito H, Kawano S, et al. Predictive factors for development of the no-reflow phenomenon in patients with reperfused anterior wall acute myocardial infarction. J Am Coll Cardiol. 2001;38(2):472–7.

    Article  PubMed  CAS  Google Scholar 

  37. Hombach V, Grebe O, Merkle N, et al. Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J. 2005;26(6):549–57.

    Article  PubMed  Google Scholar 

  38. Gibson CM, Cannon CP, Daley WL, et al. TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation. 1996;93(5):879–88.

    Article  PubMed  CAS  Google Scholar 

  39. Gibson CM, Murphy SA, Rizzo MJ, et al. Relationship between TIMI frame count and clinical outcomes after thrombolytic administration. Thrombolysis In Myocardial Infarction (TIMI) Study Group. Circulation. 1999;99(15):1945–50.

    Article  PubMed  CAS  Google Scholar 

  40. Gibson CM, Cannon CP, Murphy SA, et al. Relationship of the TIMI myocardial perfusion grades, flow grades, frame count, and percutaneous coronary intervention to long-term outcomes after thrombolytic administration in acute myocardial infarction. Circulation. 2002;105(16):1909–13.

    Article  PubMed  Google Scholar 

  41. Brodie BR, Stuckey TD, Hansen C, et al. Relation between electrocardiographic ST-segment resolution and early and late outcomes after primary percutaneous coronary intervention for acute myocardial infarction. Am J Cardiol. 2005;95(3):343–8.

    Article  PubMed  Google Scholar 

  42. Ragosta M, Camarano G, Kaul S, et al. Microvascular integrity indicates myocellular viability in patients with recent myocardial infarction. New insights using myocardial contrast echocardiography. Circulation. 1994;89(6):2562–9.

    Article  PubMed  CAS  Google Scholar 

  43. Iliceto S, Galiuto L, Marchese A, et al. Analysis of microvascular integrity, contractile reserve, and myocardial viability after acute myocardial infarction by dobutamine echocardiography and myocardial contrast echocardiography. Am J Cardiol. 1996;77(7):441–5.

    Article  PubMed  CAS  Google Scholar 

  44. Lepper W, Hoffmann R, Kamp O, et al. Assessment of myocardial reperfusion by intravenous myocardial contrast echocardiography and coronary flow reserve after primary percutaneous transluminal coronary angioplasty [correction of angiography] in patients with acute myocardial infarction. Circulation. 2000;101(20):2368–74.

    Article  PubMed  CAS  Google Scholar 

  45. Albert TS, Kim RJ, Judd RM. Assessment of no-reflow regions using cardiac MRI. Basic Res Cardiol. 2006;101(5):383–90.

    Article  PubMed  Google Scholar 

  46. Galiuto L, Rebuzzi AG, Crea F. The no-reflow phenomenon. JACC Cardiovasc Imaging. 2009;2(1):85–6.

    Article  PubMed  Google Scholar 

  47. Mather AN, Lockie T, Nagel E, et al. Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction. J Cardiovasc Magn Reson. 2009;11:33.

    Article  PubMed  Google Scholar 

  48. Klem I, Kim RJ. Assessment of microvascular injury after acute myocardial infarction: importance of the area at risk. Nat Clin Pract Cardiovasc Med. 2008;5(12):756–7.

    Article  PubMed  Google Scholar 

  49. Bruder O, Breuckmann F, Jensen C, et al. Prognostic impact of contrast-enhanced CMR early after acute ST segment elevation myocardial infarction (STEMI) in a regional STEMI network: results of the “Herzinfarktverbund Essen”. Herz. 2008;33(2):136–42.

    Article  PubMed  Google Scholar 

  50. Francone M, Bucciarelli-Ducci C, Carbone I, et al. Impact of primary coronary angioplasty delay on myocardial salvage, infarct size, and microvascular damage in patients with ST-segment elevation myocardial infarction: insight from cardiovascular magnetic resonance. J Am Coll Cardiol. 2009;54(23):2145–53.

    Article  PubMed  Google Scholar 

  51. Kaul S, Jayaweera AR. Myocardial contrast echocardiography has the potential for the assessment of coronary microvascular reserve. J Am Coll Cardiol. 1993;21(2):356–8.

    Article  PubMed  CAS  Google Scholar 

  52. Kaul S, Jayaweera AR. Coronary and myocardial blood volumes: noninvasive tools to assess the coronary microcirculation? Circulation. 1997;96(3):719–24.

    Article  PubMed  CAS  Google Scholar 

  53. Hayat SA, Senior R. Myocardial contrast echocardiography in ST elevation myocardial infarction: ready for prime time? Eur Heart J. 2008;29(3):299–314.

    Article  PubMed  Google Scholar 

  54. Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation. 2005;111(3):363–8.

    Article  PubMed  Google Scholar 

  55. Britten MB, Zeiher AM, Schachinger V. Microvascular dysfunction in angiographically normal or mildly diseased coronary arteries predicts adverse cardiovascular long-term outcome. Coron Artery Dis. 2004;15(5):259–64.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Marzilli MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Giacinta, G., Marzilli, M. (2013). Microvascular Coronary Dysfunction Post–Myocardial Revascularization. In: Kaski, J., Eslick, G., Bairey Merz, C. (eds) Chest Pain with Normal Coronary Arteries. Springer, London. https://doi.org/10.1007/978-1-4471-4838-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4838-8_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4837-1

  • Online ISBN: 978-1-4471-4838-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics