Skip to main content

Drug Induced Liver Injury

  • Chapter
  • First Online:
Clinical Cases in Hepatology

Abstract

Hepatotoxicity is toxic damage to the liver that includes the nature of the hepatotoxic agent, the type and mechanism of liver injury, the circumstances of the exposure, and the medical and social context in which it occurs.

Drug induced liver injury (DILI) is the injurious effect to the liver by an agent, natural or produced, manifested by a hepatocellular, cholestatic, or mixed liver profile with or without hyperbilirubinemia and hepatic synthetic dysfunction, including acute liver failure.

Rapid identification of the toxic agent and its discontinuation is the most critical measure in DILI. The approach to a patient with suspected DILI concerns identifying time to onset or latency, i.e., challenge, time to recovery, i.e., dechallenge, injury pattern and clinical phenotype, exclusion of other causes of liver disease, and the likelihood of the agent to cause DILI. Rechallenge with the same agent, intentional or accidental, is avoided; the second episode of DILI can be worse than the index reaction. Expert opinion and access to LiverToxNIH.gov provides information regarding the potential involvement of agents in the DILI episodes.

Genetic susceptibility for DILI to certain agents, including flucloxacillin, amoxicillin-clavulanate, and diclofenac, has been identified. Susceptibility genes related to drug metabolism have also been documented.

Prudent patient follow up is necessary for patients on medications. Medication reconciliation during clinic visits is a standard practice that allows for the identification of DILI. A genetic, cellular, organoid, and human-scale evidence testing platform recently developed may provide the opportunity to test the potential for DILI in drug development and clinical trials phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zimmerman HJ. Drug-induced liver injury. In: Zimmerman HJ, editor. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver; 1999. p. 427–56.

    Google Scholar 

  2. NIH. LiverTox: clinical and research information on drug-induced liver injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Clinical Course and Diagnosis of Drug Induced Liver Disease. [Updated 2019 May 4]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548733/ 2019 [cited 2021 1/04/2021]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK548733/.

  3. Francis P, Navarro VJ. Drug induced hepatotoxicity. StatPearls. Treasure Island FL: © 2020, StatPearls Publishing LLC; 2020.

    Google Scholar 

  4. Hayashi PH, Fontana RJ. Clinical features, diagnosis, and natural history of drug-induced liver injury. Semin Liver Dis. 2014 May;34(2):134–44.

    Article  PubMed  Google Scholar 

  5. Lauschke VM, Zhou Y, Ingelman-Sundberg M. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol Ther. 2019 May;197:122–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Monshi MM, Faulkner L, Gibson A, Jenkins RE, Farrell J, Earnshaw CJ, et al. Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury. Hepatology (Baltimore, Md). 2013 Feb;57(2):727–39.

    Article  CAS  Google Scholar 

  7. Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe'er I, Floratos A, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009 Jul;41(7):816–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hautekeete ML, Horsmans Y, Van Waeyenberge C, Demanet C, Henrion J, Verbist L, et al. HLA association of amoxicillin-clavulanate--induced hepatitis. Gastroenterology. 1999 Nov;117(5):1181–6.

    Article  CAS  PubMed  Google Scholar 

  9. Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP, Andrade RJ, et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology. 2011 Jul;141(1):338–47.

    Article  CAS  PubMed  Google Scholar 

  10. Sharma SK, Balamurugan A, Saha PK, Pandey RM, Mehra NK. Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment. Am J Respir Crit Care Med. 2002 Oct 1;166(7):916–9.

    Article  PubMed  Google Scholar 

  11. Urban TJ, Daly AK, Aithal GP. Genetic basis of drug-induced liver injury: present and future. Semin Liver Dis. 2014 May;34(2):123–33.

    Article  CAS  PubMed  Google Scholar 

  12. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 2013 May;19(5):557–66.

    Article  CAS  PubMed  Google Scholar 

  13. Ceccarelli F, Agmon-Levin N, Perricone C. Genetic factors of autoimmune diseases 2017. J Immunol Res. 2017;2017:2789242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Urban TJ, Shen Y, Stolz A, Chalasani N, Fontana RJ, Rochon J, et al. Limited contribution of common genetic variants to risk for liver injury due to a variety of drugs. Pharmacogenet Genomics. 2012 Nov;22(11):784–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002 Dec;3(6):561–97.

    Article  CAS  PubMed  Google Scholar 

  16. Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013 Jun;45(6):1121–32.

    Article  CAS  PubMed  Google Scholar 

  17. Sim E, Abuhammad A, Ryan A. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Br J Pharmacol. 2014 Jun;171(11):2705–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sheehan D, Meade G, Foley VM, Dowd CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J. 2001 Nov 15;360(Pt 1):1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang YS, Chern HD, Su WJ, Wu JC, Chang SC, Chiang CH, et al. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology (Baltimore, Md). 2003 Apr;37(4):924–30.

    Article  CAS  Google Scholar 

  20. Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, Day CP. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology. 2007 Jan;132(1):272–81.

    Article  CAS  PubMed  Google Scholar 

  21. Chan SL, Chua APG, Aminkeng F, Chee CBE, Jin S, Loh M, et al. Association and clinical utility of NAT2 in the prediction of isoniazid-induced liver injury in Singaporean patients. PLoS One. 2017;12(10):e0186200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Watanabe I, Tomita A, Shimizu M, Sugawara M, Yasumo H, Koishi R, et al. A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. Clin Pharmacol Ther. 2003 May;73(5):435–55.

    Article  CAS  PubMed  Google Scholar 

  23. Lucena MI, Andrade RJ, Martínez C, Ulzurrun E, García-Martín E, Borraz Y, et al. Glutathione S-transferase m1 and t1 null genotypes increase susceptibility to idiosyncratic drug-induced liver injury. Hepatology (Baltimore, Md). 2008 Aug;48(2):588–96.

    Article  Google Scholar 

  24. Nicoletti P, Devarbhavi H, Goel A, Venkatesan R, Eapen CE, Grove J, et al. Genetic risk factors in drug-induced liver injury due to isoniazid-containing Antituberculosis drug regimens. Clin Pharmacol Ther. 2020 Nov 1;

    Google Scholar 

  25. Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of hepatic transporters in clinical disposition of drugs and their metabolites. J Clin Pharmacol. 2016 Jul;56(Suppl 7):S23–39.

    Article  CAS  PubMed  Google Scholar 

  26. Taniguchi K, Wada M, Kohno K, Nakamura T, Kawabe T, Kawakami M, et al. A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res. 1996 Sep 15;56(18):4124–9.

    CAS  PubMed  Google Scholar 

  27. Hodges LM, Markova SM, Chinn LW, Gow JM, Kroetz DL, Klein TE, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011 Mar;21(3):152–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haas DW, Bartlett JA, Andersen JW, Sanne I, Wilkinson GR, Hinkle J, et al. Pharmacogenetics of nevirapine-associated hepatotoxicity: an adult AIDS Clinical Trials Group collaboration. Clin Infect Dis. 2006 Sep 15;43(6):783.

    Article  CAS  PubMed  Google Scholar 

  29. Daly AK. Human leukocyte antigen (HLA) pharmacogenomic tests: potential and pitfalls. Curr Drug Metab. 2014 Feb;15(2):196–201.

    Article  CAS  PubMed  Google Scholar 

  30. Chalasani N, Bonkovsky HL, Fontana R, Lee W, Stolz A, Talwalkar J, et al. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology. 2015 Jun;148(7):1340–52 e7.

    Article  PubMed  Google Scholar 

  31. Lucena MI, Andrade RJ, Kaplowitz N, García-Cortes M, Fernández MC, Romero-Gomez M, et al. Phenotypic characterization of idiosyncratic drug-induced liver injury: the influence of age and sex. Hepatology (Baltimore, Md). 2009 Jun;49(6):2001–9.

    Article  Google Scholar 

  32. Björnsson ES, Bergmann OM, Björnsson HK, Kvaran RB, Olafsson S. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology. 2013;144(7):1419–25. 25 e1-3; quiz e19-20

    Article  PubMed  CAS  Google Scholar 

  33. EASLD. EASL clinical practice guidelines: drug-induced liver injury. J Hepatol. 2019 Jun;70(6):1222–61.

    Article  Google Scholar 

  34. Fountain FF, Tolley E, Chrisman CR, Self TH. Isoniazid hepatotoxicity associated with treatment of latent tuberculosis infection: a 7-year evaluation from a public health tuberculosis clinic. Chest. 2005 Jul;128(1):116–23.

    Article  CAS  PubMed  Google Scholar 

  35. Bryant AE 3rd, Dreifuss FE. Valproic acid hepatic fatalities. III. U.S. experience since 1986. Neurology. 1996 Feb;46(2):465–9.

    Article  PubMed  Google Scholar 

  36. Floreani A, Restrepo-Jiménez P, Secchi MF, De Martin S, Leung PSC, Krawitt E, et al. Etiopathogenesis of autoimmune hepatitis. J Autoimmun. 2018 Dec;95:133–43.

    Article  CAS  PubMed  Google Scholar 

  37. Lleo A, Wang GQ, Gershwin ME, Hirschfield GM. Primary biliary cholangitis. Lancet (London, England). 2020 Dec 12;396(10266):1915–26.

    Article  CAS  Google Scholar 

  38. Watkins PB, Kaplowitz N, Slattery JT, Colonese CR, Colucci SV, Stewart PW, et al. Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial. JAMA. 2006 Jul 5;296(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  39. Chalasani N, Reddy KRK, Fontana RJ, Barnhart H, Gu J, Hayashi PH, et al. Idiosyncratic drug induced liver injury in African-Americans is associated with greater morbidity and mortality compared to Caucasians. Am J Gastroenterol. 2017 Sep;112(9):1382–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cai Y, Yi J, Zhou C, Shen X. Pharmacogenetic study of drug-metabolising enzyme polymorphisms on the risk of anti-tuberculosis drug-induced liver injury: a meta-analysis. PLoS One. 2012;7(10):e47769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zimmerman HJ. Hepatotoxic effects of ethanol. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver; 1999. p. 147–75.

    Google Scholar 

  42. Akhondi-Meybodi M, Mortazavy-Zadah MR, Hashemian Z, Moaiedi M. Incidence and risk factors for non-alcoholic steatohepatitis in females treated with tamoxifen for breast cancer. Arab J Gastroenterol. 2011 Mar;12(1):34–6.

    Article  CAS  PubMed  Google Scholar 

  43. Bruno S, Maisonneuve P, Castellana P, Rotmensz N, Rossi S, Maggioni M, et al. Incidence and risk factors for non-alcoholic steatohepatitis: prospective study of 5408 women enrolled in Italian tamoxifen chemoprevention trial. BMJ (Clin Res ed). 2005 Apr 23;330(7497):932.

    Article  Google Scholar 

  44. Dawwas MF, Aithal GP. End-stage methotrexate-related liver disease is rare and associated with features of the metabolic syndrome. Aliment Pharmacol Ther. 2014 Oct;40(8):938–48.

    Article  CAS  PubMed  Google Scholar 

  45. Kaplan MM. Methotrexate hepatotoxicity and the premature reporting of mark Twain's death: both greatly exaggerated. Hepatology (Baltimore, Md). 1990 Oct;12(4 Pt 1):784–6.

    Article  CAS  Google Scholar 

  46. Servoss JC, Kitch DW, Andersen JW, Reisler RB, Chung RT, Robbins GK. Predictors of antiretroviral-related hepatotoxicity in the adult AIDS clinical trial group (1989-1999). J Acquir Immune Defic Syndr. 2006 Nov 1;43(3):320–3.

    Article  CAS  PubMed  Google Scholar 

  47. Dworkin MS, Adams MR, Cohn DL, Davidson AJ, Buskin S, Horwitch C, et al. Factors that complicate the treatment of tuberculosis in HIV-infected patients. J Acquir Immune Defic Syndr. 2005 Aug 1;39(4):464–70.

    Article  CAS  PubMed  Google Scholar 

  48. Kim WS, Lee SS, Lee CM, Kim HJ, Ha CY, Kim HJ, et al. Hepatitis C and not hepatitis B virus is a risk factor for anti-tuberculosis drug induced liver injury. BMC Infect Dis. 2016 Feb 1;16:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kullak-Ublick GA, Andrade RJ, Merz M, End P, Benesic A, Gerbes AL, et al. Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut. 2017 Jun;66(6):1154–64.

    Article  CAS  PubMed  Google Scholar 

  50. Lammert C, Einarsson S, Saha C, Niklasson A, Bjornsson E, Chalasani N. Relationship between daily dose of oral medications and idiosyncratic drug-induced liver injury: search for signals. Hepatology (Baltimore, Md). 2008 Jun;47(6):2003–9.

    Article  CAS  Google Scholar 

  51. Park BK, Boobis A, Clarke S, Goldring CE, Jones D, Kenna JG, et al. Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discov. 2011 Apr;10(4):292–306.

    Article  CAS  PubMed  Google Scholar 

  52. Srivastava A, Maggs JL, Antoine DJ, Williams DP, Smith DA, Park BK. Role of reactive metabolites in drug-induced hepatotoxicity. Handb Exp Pharmacol. 2010;196:165–94.

    Article  CAS  Google Scholar 

  53. Lammert C, Bjornsson E, Niklasson A, Chalasani N. Oral medications with significant hepatic metabolism at higher risk for hepatic adverse events. Hepatology (Baltimore, Md). 2010 Feb;51(2):615–20.

    Article  CAS  Google Scholar 

  54. Chen M, Borlak J, Tong W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology (Baltimore, Md). 2013 Jul;58(1):388–96.

    Article  CAS  Google Scholar 

  55. Mishra P, Chen M. Direct-acting antivirals for chronic hepatitis C: can drug properties signal potential for liver injury? Gastroenterology. 2017 May;152(6):1270–4.

    Article  PubMed  Google Scholar 

  56. Weng Z, Wang K, Li H, Shi Q. A comprehensive study of the association between drug hepatotoxicity and daily dose, liver metabolism, and lipophilicity using 975 oral medications. Oncotarget. 2015 Jul 10;6(19):17031–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Steele MA, Burk RF, DesPrez RM. Toxic hepatitis with isoniazid and rifampin. A Meta-Analysis Chest. 1991 Feb;99(2):465–71.

    CAS  PubMed  Google Scholar 

  58. Gopaul S, Farrell K, Abbott F. Effects of age and polytherapy, risk factors of valproic acid (VPA) hepatotoxicity, on the excretion of thiol conjugates of (E)-2,4-diene VPA in people with epilepsy taking VPA. Epilepsia. 2003 Mar;44(3):322–8.

    Article  CAS  PubMed  Google Scholar 

  59. Vuda M, Kamath A. Drug induced mitochondrial dysfunction: mechanisms and adverse clinical consequences. Mitochondrion. 2016 Nov;31:63–74.

    Article  CAS  PubMed  Google Scholar 

  60. McKenzie R, Fried MW, Sallie R, Conjeevaram H, Di Bisceglie AM, Park Y, et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N Engl J Med. 1995 Oct 26;333(17):1099–105.

    Article  CAS  PubMed  Google Scholar 

  61. Will Y, Dykens J. Mitochondrial toxicity assessment in industry--a decade of technology development and insight. Expert Opin Drug Metab Toxicol. 2014 Aug;10(8):1061–7.

    Article  PubMed  Google Scholar 

  62. Montessori V, Harris M, Montaner JS. Hepatotoxicity of nucleoside reverse transcriptase inhibitors. Semin Liver Dis. 2003 May;23(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  63. Morgan RE, Trauner M, van Staden CJ, Lee PH, Ramachandran B, Eschenberg M, et al. Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicological Sci. 2010 Dec;118(2):485–500.

    Article  CAS  Google Scholar 

  64. Kostrubsky SE, Strom SC, Kalgutkar AS, Kulkarni S, Atherton J, Mireles R, et al. Inhibition of hepatobiliary transport as a predictive method for clinical hepatotoxicity of nefazodone. Toxicological Sci. 2006 Apr;90(2):451–9.

    Article  CAS  Google Scholar 

  65. McRae MP, Lowe CM, Tian X, Bourdet DL, Ho RH, Leake BF, et al. Ritonavir, saquinavir, and efavirenz, but not nevirapine, inhibit bile acid transport in human and rat hepatocytes. J Pharmacol Exp Ther. 2006 Sep;318(3):1068–75.

    Article  CAS  PubMed  Google Scholar 

  66. Fattinger K, Funk C, Pantze M, Weber C, Reichen J, Stieger B, et al. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther. 2001 Apr;69(4):223–31.

    Article  CAS  PubMed  Google Scholar 

  67. Andrade RJ, Lucena MI, Fernández MC, Pelaez G, Pachkoria K, García-Ruiz E, et al. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology. 2005 Aug;129(2):512–21.

    Article  PubMed  Google Scholar 

  68. Navarro VJ, Khan I, Björnsson E, Seeff LB, Serrano J, Hoofnagle JH. Liver injury from herbal and dietary supplements. Hepatology (Baltimore, Md). 2017 Jan;65(1):363–73.

    Article  CAS  Google Scholar 

  69. Davern TJ, Chalasani N, Fontana RJ, Hayashi PH, Protiva P, Kleiner DE, et al. Acute hepatitis E infection accounts for some cases of suspected drug-induced liver injury. Gastroenterology. 2011 Nov;141(5):1665–72 e1-9.

    Article  PubMed  Google Scholar 

  70. Teschke R, Danan G. Drug induced liver injury with analysis of alternative causes as confounding variables. Br J Clin Pharmacol. 2018 Jul;84(7):1467–77.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Waseem N, Chen PH. Hypoxic hepatitis: a review and clinical update. J Clin Transl Hepatol. 2016 Sep 28;4(3):263–8.

    PubMed  PubMed Central  Google Scholar 

  72. Frech TM, Mar D. Gastrointestinal and hepatic disease in systemic sclerosis. Rheum Dis Clin N Am. 2018 Feb;44(1):15–28.

    Article  Google Scholar 

  73. Correale M, Tricarico L, Leopizzi A, Mallardi A, Mazzeo P, Tucci S, et al. Liver disease and heart failure. Panminerva Med. 2020 Mar;62(1):26–37.

    Article  PubMed  Google Scholar 

  74. Garcia-Cortes M, Robles-Diaz M, Stephens C, Ortega-Alonso A, Lucena MI, Andrade RJ. Drug induced liver injury: an update. Arch Toxicol. 2020 Oct;94(10):3381–407.

    Article  CAS  PubMed  Google Scholar 

  75. Sandhu N, Navarro V. Drug-induced liver injury in GI practice. Hepatology Comm. 2020 May;4(5):631–45.

    Article  Google Scholar 

  76. Danan G, Benichou C. Causality assessment of adverse reactions to drugs--I. a novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol. 1993 Nov;46(11):1323–30.

    Article  CAS  PubMed  Google Scholar 

  77. Maria VA, Victorino RM. Development and validation of a clinical scale for the diagnosis of drug-induced hepatitis. Hepatology (Baltimore, Md). 1997 Sep;26(3):664–9.

    Article  CAS  Google Scholar 

  78. Rockey DC, Seeff LB, Rochon J, Freston J, Chalasani N, Bonacini M, et al. Causality assessment in drug-induced liver injury using a structured expert opinion process: comparison to the Roussel-Uclaf causality assessment method. Hepatology (Baltimore, Md). 2010 Jun;51(6):2117–26.

    Article  Google Scholar 

  79. NIH. In: Charles Sprecher Davidson CML, Earl C. Chamberlayne, editor. Guidelines for detection of hepatotoxicity due to drugs and chemicals: NIH publication 79–313. U.S. Dept of Health, Education, and Welfare, Public Health Service, National Institutes of Health; 1979; 1979.

    Google Scholar 

  80. Reuben A. Hy's law. Hepatology (Baltimore, Md). 2004 Feb;39(2):574–8.

    Article  Google Scholar 

  81. Administration FD. Guidance for industry. Premarketing Clinical, Evaluation: Drug-Induced Liver Injury; 2009.

    Google Scholar 

  82. Robles-Diaz M, Lucena MI, Kaplowitz N, Stephens C, Medina-Cáliz I, González-Jimenez A, et al. Use of Hy's law and a new composite algorithm to predict acute liver failure in patients with drug-induced liver injury. Gastroenterology. 2014 Jul;147(1):109–18 e5.

    Article  CAS  PubMed  Google Scholar 

  83. Siddique AS, Siddique O, Einstein M, Urtasun-Sotil E, Ligato S. Drug and herbal/dietary supplements-induced liver injury: a tertiary care center experience. World J Hepatol. 2020 May 27;12(5):207–19.

    Article  PubMed  PubMed Central  Google Scholar 

  84. McMaster KR 3rd, Hennigar GR. Drug-induced granulomatous hepatitis. Laboratory Investigation. 1981 Jan;44(1):61–73.

    PubMed  Google Scholar 

  85. NIH. Nivolumab 2016. Available from: LiverTox: clinical and research information on drug-induced liver injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Nivolumab. [Updated 2016 May 1]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548206/.

  86. NIH. Atezolizumab 2016. Available from: LiverTox: clinical and research information on drug-induced liver injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Atezolizumab. [Updated 2016 Dec 6]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548858/.

  87. Reuben A, Tillman H, Fontana RJ, Davern T, McGuire B, Stravitz RT, et al. Outcomes in adults with acute liver failure between 1998 and 2013: an observational cohort study. Ann Intern Med. 2016 Jun 7;164(11):724–32.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Polson J, Lee WM. AASLD position paper: the management of acute liver failure. Hepatology (Baltimore, Md). 2005 May;41(5):1179–97.

    Article  Google Scholar 

  89. Andrade RJ, Lucena MI, Kaplowitz N, García-Muņoz B, Borraz Y, Pachkoria K, et al. Outcome of acute idiosyncratic drug-induced liver injury: long-term follow-up in a hepatotoxicity registry. Hepatology (Baltimore, Md). 2006 Dec;44(6):1581–8.

    Article  CAS  Google Scholar 

  90. Björnsson E, Kalaitzakis E, Av Klinteberg V, Alem N, Olsson R. Long-term follow-up of patients with mild to moderate drug-induced liver injury. Aliment Pharmacol Ther. 2007 Jul 1;26(1):79–85.

    Article  PubMed  Google Scholar 

  91. Björnsson E, Davidsdottir L. The long-term follow-up after idiosyncratic drug-induced liver injury with jaundice. J Hepatol. 2009 Mar;50(3):511–7.

    Article  PubMed  Google Scholar 

  92. Isaacs M, Cardones AR, Rahnama-Moghadam S. DRESS syndrome: clinical myths and pearls. Cutis. 2018 Nov;102(5):322–6.

    PubMed  Google Scholar 

  93. Martínez-Cabriales SA, Rodríguez-Bolaños F, Shear NH. Drug reaction with eosinophilia and systemic symptoms (DReSS): how far have we come? Am J Clin Dermatol. 2019 Apr;20(2):217–36.

    Article  PubMed  Google Scholar 

  94. NIH. Acetylcysteine 2016. Available from: LiverTox: clinical and research information on drug-induced liver injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Acetylcysteine. [Updated 2016 Nov 7]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548401/.

  95. Karkhanis J, Verna EC, Chang MS, Stravitz RT, Schilsky M, Lee WM, et al. Steroid use in acute liver failure. Hepatology (Baltimore, Md). 2014 Feb;59(2):612–21.

    Article  CAS  Google Scholar 

  96. Wree A, Dechêne A, Herzer K, Hilgard P, Syn WK, Gerken G, et al. Steroid and ursodesoxycholic acid combination therapy in severe drug-induced liver injury. Digestion. 2011;84(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  97. Thompson WG. Cholestyramine. Can Med Assoc J. 1971 Feb 20;104(4):305–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. NIH. Leflunomide 2019. Available from: LiverTox: clinical and research information on drug-induced liver injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Leflunomide. [Updated 2019 Apr 15]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548725/.

  99. Lheureux PE, Penaloza A, Zahir S, Gris M. Science review: carnitine in the treatment of valproic acid-induced toxicity–what is the evidence? Crit Care. 2005 Oct 5;9(5):431–40.

    Article  PubMed  PubMed Central  Google Scholar 

  100. NIH. Valproate 2020. Available from: LiverTox: clinical and research information on drug-induced liver injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Valproate. [Updated 2020 Jul 31]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548284/.

  101. Castiella A, Zapata E, Lucena MI, Andrade RJ. Drug-induced autoimmune liver disease: A diagnostic dilemma of an increasingly reported disease. World J Hepatol. 2014;6(4):160–8.

    Google Scholar 

  102. Björnsson ES, Bergmann O, Jonasson JG, Grondal G, Gudbjornsson B, Olafsson S. Drug-induced autoimmune hepatitis: response to corticosteroids and lack of relapse after cessation of steroids. Clin Gastroenterol Hepatol. 2017 Oct;15(10):1635–6.

    Article  PubMed  Google Scholar 

  103. Chen M, Borlak J, Tong W. Predicting idiosyncratic drug-induced liver injury: some recent advances. Expert Rev Gastroenterol Hepatol. 2014 Sep;8(7):721–3.

    Article  CAS  PubMed  Google Scholar 

  104. Saukkonen JJ, Cohn DL, Jasmer RM, Schenker S, Jereb JA, Nolan CM, et al. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med. 2006 Oct 15;174(8):935–52.

    Article  CAS  PubMed  Google Scholar 

  105. Thakkar S, Li T, Liu Z, Wu L, Roberts R, Tong W. Drug-induced liver injury severity and toxicity (DILIst): binary classification of 1279 drugs by human hepatotoxicity. Drug Discov Today. 2020 Jan;25(1):201–8.

    Article  CAS  PubMed  Google Scholar 

  106. Koido M, Kawakami E, Fukumura J, Noguchi Y, Ohori M, Nio Y, et al. Polygenic architecture informs potential vulnerability to drug-induced liver injury. Nat Med. 2020 Oct;26(10):1541–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. DeLeve LD, Shulman HM, McDonald GB. Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease). Semin Liver Dis. 2002;22(1):27–42.

    Google Scholar 

  108. Czaja AJ. Drug-induced autoimmune-like hepatitis. Dig Dis Sci. 2011;56(4):958–76.

    Google Scholar 

  109. Peixoto A, Martins Rocha T, Santos-Antunes J, Aguiar F, Bernardes M, Vaz C, et al. Etanercept-induced granulomatous hepatitis as a rare cause of abnormal liver tests. Acta Gastroenterol Belg. 2019;82(1):93–5.

    Google Scholar 

  110. Aldyab M, Ells PF, Bui R, Chapman TD, Lee H. Kratom-Induced Cholestatic Liver Injury Mimicking Anti-Mitochondrial Antibody-Negative Primary Biliary Cholangitis: A Case Report and Review of Literature. Gastroenterology Res. 2019;12(4):211–5.

    Google Scholar 

  111. Ishak KG, Zimmerman HJ. Drug-induced and toxic granulomatous hepatitis. Baillieres Clin Gastroenterol. 1988;2(2):463–80.

    Google Scholar 

  112. Ramachandran R, Kakar S. Histological patterns in drug-induced liver disease. J Clin Pathol. 2009;62(6):481–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bergasa, N.V. (2022). Drug Induced Liver Injury. In: Bergasa, N.V. (eds) Clinical Cases in Hepatology. Springer, London. https://doi.org/10.1007/978-1-4471-4715-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4715-2_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4714-5

  • Online ISBN: 978-1-4471-4715-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics