Skip to main content
Log in

A Robust Color Edge Detection Algorithm Based on the Quaternion Hardy Filter

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

This paper presents a robust filter called the quaternion Hardy filter (QHF) for color image edge detection. The QHF can be capable of color edge feature enhancement and noise resistance. QHF can be used flexibly by selecting suitable parameters to handle different levels of noise. In particular, the quaternion analytic signal, which is an effective tool in color image processing, can also be produced by quaternion Hardy filtering with specific parameters. Based on the QHF and the improved Di Zenzo gradient operator, a novel color edge detection algorithm is proposed; importantly, it can be efficiently implemented by using the fast discrete quaternion Fourier transform technique. From the experimental results, we conclude that the minimum PSNR improvement rate is 2.3% and the minimum SSIM improvement rate is 30.2% on the CSEE database. The experiments demonstrate that the proposed algorithm outperforms several widely used algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulhussain S H, Ramli A R, et al. Image edge detection operators based on orthogonal polynomials. Int J Image Data Fus, 2017, 8(3): 293–308

    Google Scholar 

  2. Heath M D, Sarkar S, et al. A robust visual method for assessing the relative performance of edge-detection algorithms. IEEE T Pattern Anal, 1997, 19(12): 1338–1359. doi:https://doi.org/10.1109/34.643893

    Article  Google Scholar 

  3. Abdulhussain S H, Ramli A R, et al. Orthogonal polynomial embedded image kernel. Proc Int Conf Inf Commun Technol, 2019: 215–221

  4. Zuppinger C. Edge-detection for contractility measurements with cardiac spheroids, Stem Cell-Derived Models in Toxicology. New York (NY): Humana Press, 2017: 211–227

    Book  Google Scholar 

  5. Shui P, Fan S. SAR image edge detection robust to isolated strong scatterers using anisotropic morphological directional ratio test. IEEE Access, 2018, 6: 37272–37285

    Article  Google Scholar 

  6. Gao Y, Leung M K H, et al. Face recognition using line edge map. IEEE Trans. Pattern Anal Mach Intell, 2002, 24(6): 764–779

    Article  Google Scholar 

  7. Nejati H, Azimifar Z, et al. Using fast fourier transform for weed detection in corn fields. 2008 IEEE Int Conf Syst, Man and Cybern, IEEE, 2008

  8. Song X, Zhao X, et al. Edgestereo: An effective multi-task learning network for stereo matching and edge detection. Int J Comput Vis, 2020: 1–21

  9. Zhang T, Wang X, et al. GCB-Net: Graph Convolutional Broad Network and Its Application in Emotion Recognition. IEEE Trans Affective Comput, 2019

  10. Zhang T, Su G, et al. Hierarchical Lifelong Learning by Sharing Representations and Integrating Hypothesis. IEEE Trans Syst, Man, Cybern, 2018

  11. Peng X, Feng J, et al. Structured AutoEncoders for Subspace Clustering. IEEE Trans Image Process, 2018, 27(10): 5076–5086

    Article  MathSciNet  Google Scholar 

  12. Sobel I. An isotropic 3 * 3 image gradient operator. Machine Vision for Three-Dimensional Scene, 1990: 376–379

  13. Felsberg M, Sommer G. The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. J Math Imaging Vision, 2004, 21(1/8): 5–26

    Article  MathSciNet  Google Scholar 

  14. Yang Y, Kou K I, et al. Edge detection methods based on modified differential phase congruency of monogenic signal. Multidim Syst Sign Process, 2018, 29(1): 339–359

    Article  MathSciNet  Google Scholar 

  15. Koschan A, Abidi M. Detection and classification of edges in color images. IEEE Signal Process Mag, 2005, 22(1): 64–73

    Article  Google Scholar 

  16. Zenzo S Di. A note on the gradient of a multi-image. Computer vision, graphics. Image Process, 1986, 33(1): 116–125

    MATH  Google Scholar 

  17. Jin L, Liu H, et al. Improved direction estimation for Di Zenzo’s multichannel image gradient operator. Pattern Recogn, 2012, 45(12): 4300–4311

    Article  Google Scholar 

  18. Pei S C, Ding J J. Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT. IEEE Trans Signal Process, 2001, 49(11): 2783–2797

    Article  MathSciNet  Google Scholar 

  19. Barthelemy Q, Larue A, et al. Color sparse representations for image processing: review, models, and prospects. IEEE Trans Image Process, 2015, 24(11): 3978–3989

    Article  MathSciNet  Google Scholar 

  20. Ell T A, Sangwine S J. Hypercomplex Fourier transforms of color images. IEEE Trans Image Process, 2007, 16(1): 22–35

    Article  MathSciNet  Google Scholar 

  21. Ell T A, Le Bihan N et al. Quaternion Fourier transforms for signal and image processing. John Wiley & Sons, 2014

  22. Hu X X, Kou K I. Quaternion Fourier and linear canonical inversion theorems. Math Meth Appl Sci, 2017, 40(7): 2421–2440

    Article  MathSciNet  Google Scholar 

  23. Hu X X, Kou K I. Phase-based edge detection algorithms. Math Meth Appl Sci, 2018: 1–22

  24. Hitzer E M S. Quaternion Fourier transform on quaternion fields and generalizations. Adv Appl Clifford Alg, 2007, 17(3): 497–517

    Article  MathSciNet  Google Scholar 

  25. Bülow T, Sommer G. Hypercomplex signals-a novel extension of the analytic signal to the multidimensional case. IEEE Trans Signal Process, 2001, 49(11): 2844–2852

    Article  MathSciNet  Google Scholar 

  26. Hamilton W R. On quaternions; or on a new system of imaginaries in algebra. Philosophical Magazine, 1844, 25(3): 489–495

    Google Scholar 

  27. Stein E M, Shakarchi R. Fourier analysis: an introduction. Princeton University Press, 2011

  28. Ell T A. Hypercomplex spectral transformations [D]. Minneapolis: University of Minnesota, 1992

    Google Scholar 

  29. Sangwine S J. Fourier transforms of colour images using quaternion or hypercomplex. Electronics Letters, 1996, 32(21): 1979–1980

    Article  Google Scholar 

  30. Kou K I, Liu M S, et al. Envelope detection using generalized analytic signal in 2D QLCT domains. Multidimensional Syst Signal Process, 2017, 28(4): 1343–1366

    Article  MathSciNet  Google Scholar 

  31. Grigoryan A M, Jenkinson J, et al. Quaternion Fourier transform based alpha-rooting method for color image measurement and enhancement. Signal Process, 2015, 109: 269–289

    Article  Google Scholar 

  32. Cheng D, Kou K I. Plancherel theorem and quaternion Fourier transform for square integrable functions. Complex Var Elliptic, 2019, 64(2): 223–242

    Article  MathSciNet  Google Scholar 

  33. Hitzer E, Sangwine S J. The Orthogonal 2D Planes Split of Quaternions and Steerable Quaternion Fourier Transformations//Hitzer E, Sangwine S. Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics. Basel: Birkhüauser, 2013

    Chapter  Google Scholar 

  34. Chen D S, Song F F, et al. An adaptive global mapping approach for color to grayscale image conversion. Comput Syst Appl, 2013, 22: 164–167

    Google Scholar 

  35. Synthetic database[OL]. [2021-07-04]. https://urldefense.proofpoint.com/v2/url?u=http-3A_color.univ-2Dlille.fr_datasets_color-2Dedge&d=DwIFaQ&c=KXXihdR8fRNGFkKiMQzstu-8MbOxdlNuZkcSBymGmgo&r=WuCkcl8HOAexOSwshlwJ3w&m=GpWzZCbpvddgVNECF4m_mlofU3pS9zmK0WK-eRKLN2Q&s=GRVRNnmdJv7DBtB1vHs6n-mw2OpOT-FiCx5e3fl0p4&e=

  36. CSEE database[OL]. [2021-07-04]. http://marathon.csee.usf.edu/edge/edge_detection.html

  37. Scene database[OL]. [2021-07-04]. http://decsai.ugr.es/cvg/dbimagenes/

  38. Farag W, Saleh Z. Road Lane-Lines Detection in Real-Time for Advanced Driving Assistance Systems//2018 Int Conf Inno Intel Inf, Comp, Tech (3ICT). IEEE, 2018: 1–8

  39. Khongprasongsiri C, Kumhom P, et al. A hardware implementation for real-time lane detection using high-level synthesis//2018 Int Workshop Advanced Image Technol. IEEE, 2018: 1–4

  40. Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell, 1986, 8: 679–714

    Article  Google Scholar 

  41. Prewitt J M S. Object enhancement and extraction. Picture Process Psych, 1970, 10(1): 15–19

    Google Scholar 

  42. Masoud A A, Bayoumi M M. Using local structure for the reliable removal of noise from the output of the LoG edge detector. IEEE Trans Syst, Man, Cybern, 1995, 25(2): 328–337

    Article  Google Scholar 

  43. Kortli Y, Marzougui M, et al. A novel illumination-invariant lane detection system//2017 2nd Int Conf Anti-Cyber Crimes. IEEE, 2017: 166–171

  44. Yan X, Li Y. Gorithm//2017 Chinese Automation Congress. IEEE, 2017: 2120–2124

  45. Tseng S M, Chen Y F. Average PSNR optimized cross layer user grouping and resource allocation for uplink MU-MIMO OFDMA video communications. IEEE Access, 2018, 6: 50559–50571

    Article  Google Scholar 

  46. Jia H, Peng X, et al. Multiverse optimization algorithm based on Lévy flight improvement for multithreshold color image segmentation. IEEE Access, 2019, 7: 32805–32844

    Article  Google Scholar 

  47. Miao J, Kou K I, et al. Low-rank quaternion tensor completion for recovering color videos and images. Pattern Recognit, 2020, 107

  48. Wu W, Shen Q, Aldubaikhy K, et al. Enhance the edge with beamforming: Performance analysis of beamforming-enabled WLAN//2018 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). IEEE, 2018. doi: https://doi.org/10.23919/WIOPT.2018.8362872. https://ieeexplore.ieee.org/document/8362872

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kit Ian Kou  (高洁欣).

Additional information

This work was supported in part by the Science and Technology Development Fund, Macau SAR FDCT/085/2018/A2 and the Guangdong Basic and Applied Basic Research Foundation (2019A1515111185).

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, W., Cheng, D., Liu, W. et al. A Robust Color Edge Detection Algorithm Based on the Quaternion Hardy Filter. Acta Math Sci 42, 1238–1260 (2022). https://doi.org/10.1007/s10473-022-0325-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0325-3

Key words

2010 MR Subject Classification

Navigation