Skip to main content

3D-QSAR – Applications, Recent Advances, and Limitations

  • Chapter
  • First Online:
Recent Advances in QSAR Studies

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 8))

Abstract

Three-dimensional quantitative structure–activity relationship (3D-QSAR) techniques are the most prominent computational means to support chemistry within drug design projects where no three-dimensional structure of the macromolecular target is available. The primary aim of these techniques is to establish a correlation of biological activities of a series of structurally and biologically characterized compounds with the spatial fingerprints of numerous field properties of each molecule, such as steric demand, lipophilicity, and electrostatic interactions. The number of 3D-QSAR studies has exponentially increased over the last decade, since a variety of methods are commercially available in user-friendly, graphically guided software. In this chapter, we will review recent advances, known limitations, and the application of receptor-based 3D-QSAR

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miller MD, Sheridan RP, Kearsley SK (1999) A program for rapidly producing pharmacophorically relevent molecular superpositions. J Med Chem 42:1505–1514

    Article  CAS  Google Scholar 

  2. Lemmen C, Lengauer T (2000) Computational methods for the structural alignment of molecules. J Comput-Aided Mol Des 14:215–232

    Article  CAS  Google Scholar 

  3. Jain AN (2004) Ligand-based structural hypotheses for virtual screening. J Med Chem 47:947–961

    Article  CAS  Google Scholar 

  4. Hansch C, Leo A (1995) Exploring QSAR: Fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DC

    Google Scholar 

  5. Kubinyi H (1997) QSAR and 3D QSAR in drug design. Drug Discov Today 2:457–467

    Article  CAS  Google Scholar 

  6. Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA) 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  7. Folkers G, Merz A, Rognan D (1993) CoMFA: Scope and limitations. In: Kubinyi H (ed) 3D QSAR in drug design. Theory, methods and applications. ESCOM Science Publishers BV, Leiden

    Google Scholar 

  8. Klebe G, Abraham U (1993) On the prediction of binding properties of drug molecules by comparative molecular field analysis. J Med Chem 36:70–80

    Article  CAS  Google Scholar 

  9. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  10. Cruciani G (ed) (2006) Methods and principles in medicinal chemistry – molecular interaction fields. VCH Publisher, New York

    Google Scholar 

  11. Norinder U (1998) Recent progress in CoMFA methodology and related techniques. Perspect Drug Discov Des 12:3–23

    Article  Google Scholar 

  12. Kim KH, Greco G, Novellino EA (1998) Critical review of recent CoMFA applications. Perspect Drug Discov Des 12:257–315

    Article  Google Scholar 

  13. Podlogar BL, Ferguson DM (2000) QSAR and CoMFA: A perspective on the practical application to drug discovery. Drug Des Discov 1:4–12

    Google Scholar 

  14. Akamatsu M (2002) Current state and perspectives of 3D QSAR. Curr Top Med Chem 2:1381–1394

    Article  CAS  Google Scholar 

  15. Kubinyi H, Folkers G, Martin YC (eds) (1998) 3D QSAR in drug design. Ligand–protein interactions and molecular similarity. Kluwer/ESCOM, Dodrecht

    Google Scholar 

  16. Kubinyi H, Folkers G, Martin YC (eds) (1998) 3D QSAR in drug design. Recent advances. Kluwer/ESCOM, Dodrecht

    Google Scholar 

  17. Masukawa KM, Kollman PA, Kuntz ID (2003) Investigation of neuraminidase-substrate recognition using molecular dynamics and free energy calculations. J Med Chem 46:5628–5637

    Article  CAS  Google Scholar 

  18. Tame JR (2005) Scoring functions: The first 100 years. J Comput Aided Mol Des 19:441–451

    Article  CAS  Google Scholar 

  19. Kitchen DB, Decornez H, Furr JR et al. (2004) Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov 11:935–949

    Article  CAS  Google Scholar 

  20. Morris GM, Goodsell DS, Huey R et al. (1994) Distributed automatic docking of flexible ligands to proteins. J Comput Aided Mol Des 8:243–256

    Article  Google Scholar 

  21. Verdonk ML, Cole JC, Hartshorn M et al. (2003) Improved protein–ligand docking using GOLD. Proteins 52:609–623

    Article  CAS  Google Scholar 

  22. Meng E, Shoichet BK, Kuntz ID (1992) Automated docking with grid-based energy evaluation. J Comp Chem 13:505–524

    Article  CAS  Google Scholar 

  23. Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: Comparative data on docking algorithms. J Med Chem 47:558–565

    Article  CAS  Google Scholar 

  24. Böhm HJ (1998) Prediction of binding constants of protein–ligands: A fast method for the prioritisation of hits obtained from de-novo design or 3D database search programs. J Comput Aided Mol Des 12:309–323

    Article  Google Scholar 

  25. Tame JRH (1999) Scoring functions: A view from the bench. J Comput Aided Mol Des 13:99–108

    Article  CAS  Google Scholar 

  26. Wang R, Lu Y, Fang X et al. (2004) An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein–ligand complexes. J Chem Inf Comput Sci 44:2114–2125

    CAS  Google Scholar 

  27. Perola E, Walters WP, Charifson PS (2004) A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 56:235–249

    Article  CAS  Google Scholar 

  28. Gohlke H, Klebe G (2002) Approaches to the description and prediction of the binding affinity of small molecule ligands to macromolecular receptors. Angew Chem Int Ed 41:2644–2676

    Article  CAS  Google Scholar 

  29. Huang D, Caflisch A (2004) Efficient evaluation of binding free energy using continuum electrostatics solvation. J Med Chem 47:5791–5797

    Article  CAS  Google Scholar 

  30. Waller CL, Oprea TI, Giolitti A et al. (1993) Three-dimensional QSAR of human immunodeficiency virus (I) protease inhibitors. 1. A CoMFA study employing experimentally-determined alignment rules. J Med Chem 36:4152–4160

    Article  CAS  Google Scholar 

  31. Cho SJ, Garsia ML, Bier J et al. (1996) Structure-based alignment and comparative molecular field analysis of acetylcholinesterase inhibitors. J Med Chem 39:5064–5071

    Article  CAS  Google Scholar 

  32. Vaz RJ, McLEan LR, Pelton JT (1998) Evaluation of proposed modes of binding of (2S)-2-[4-[[(3S)-1-acetimidoyl-3-pyrrolidinyl]oxyl]phenyl]-3-(7-amidino-2-naphtyl)-propanoic acid hydrochloride and some analogs to factor Xa using a comparative molecular field analysis. J Comput Aided Mol Des 12:99–110

    Article  CAS  Google Scholar 

  33. Sippl W, Contreras JM, Rival YM et al. (1998) Comparative molecular field analysis of aminopyridazine acetylcholinesterase inhibitors. In: Gundertofte K (ed) Proceedings of the 12th European symposium on QSAR – molecular modelling and predicting of bioactivity. Plenum Press, Copenhagen

    Google Scholar 

  34. Sippl W (2000) Receptor-based 3D quantitative structure–activity relationships of estrogen receptor ligands. J Comput Aided Mol Des 14:559–572

    Article  CAS  Google Scholar 

  35. Sippl W (2002) Binding affinity prediction of novel estrogen receptor ligands using receptor-based 3D QSAR methods. Bioorg Med Chem 10:3741–3755

    Article  CAS  Google Scholar 

  36. Ortiz AR, Pisabarro MT, Gago F et al. (1995) Prediction of drug binding affinities by comparative binding energy analysis. J Med Chem 38:2681–2691

    Article  CAS  Google Scholar 

  37. Lozano JJ, Pastor M, Cruciani G et al. (2000) 3D QSAR methods on the basis of ligand-receptor complexes. Application of combine and GRID/GOLPE methodologies to a series of CYP1A2 inhibitors. J Comput Aided Mol Des 13:341–353

    Article  Google Scholar 

  38. Reynolds CA, Wade RC, Goodford PJ (1989) Identifying targets for bioreductive agents: Using GRID to predict selective binding regions of proteins. J Mol Graph 7:103–108

    Article  CAS  Google Scholar 

  39. Cruciani G, Watson K (1994) Comparative molecular field analysis using GRID force field and GOLPE variable selection methods in a study of inhibitors of glycogen phosphorylase b. J Med Chem 37:2589–2601

    Article  CAS  Google Scholar 

  40. Cruciani G, Crivori P, Carrupt P-A et al. (2000) Molecular fields in quantitative structure–permeation relationships. J Mol Struct 503:17–30

    CAS  Google Scholar 

  41. Duca S, Hopfinger AJ (2001) Estimation of molecular similarity based on 4D-QSAR analysis: Formalism and validation. J Chem Inf Comput Sci 41:1367–1387

    CAS  Google Scholar 

  42. Vedani A, Dobler M (2002) 5D-QSAR: The key for simulating induced fit? J Med Chem 45:2139–2149

    Article  CAS  Google Scholar 

  43. Vedani A, Dobler M, Lill MA (2005) Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. J Med Chem 48:3700–3703

    Article  CAS  Google Scholar 

  44. Gohlke H, Klebe G (2002) Drug score meets CoMFA: Adaptation of fields for molecular comparison (AFMoC) or how to tailor knowledge-based pair-potentials to a particular protein. J Med Chem 45:4153–4170

    Article  CAS  Google Scholar 

  45. Silber K, Heidler P, Kurz T et al. (2005) AFMoC enhances predictivity of 3D QSAR: A case study with DOXP-reductoisomerase. J Med Chem 48:3547–3563.

    Article  CAS  Google Scholar 

  46. Hillebrecht A, Supuran CT, Klebe G (2006) Integrated approach using protein and ligand information to analyze selectivity- and affinity-determining features of carbonic anhydrase isozymes. ChemMedChem 1:839–853

    Article  CAS  Google Scholar 

  47. Oprea TI, Garcia AE (1996) Three-dimensional quantitative structure–activity relationships of steroid aromatase inhibitors. J Comput Aided Mol Des 10:186–200

    Article  CAS  Google Scholar 

  48. Golbraikh A, Trophsa A (2002) Beware of q2! J Mol Graph Model 20:269–276

    Article  CAS  Google Scholar 

  49. Kubinyi H, Hamprecht FA, Mietzner T (1998) Three-dimensional quantitative similarity–activity relationships (3D QSiAR) from SEAL similarity matrices. J Med Chem 41:2553–2564

    Article  CAS  Google Scholar 

  50. Golbraikh A, Shen M, Xiao Z et al. (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17:241–253

    Article  CAS  Google Scholar 

  51. Norinder U (1996) Single and domain made variable selection in 3D QSAR applications. J Chemomet 10:95–105

    Article  CAS  Google Scholar 

  52. Doweyko AM (2004) 3D QSAR illusions. J Comput Aided Mol Des 18:587–596

    Article  CAS  Google Scholar 

  53. van Drie JH (2004) Pharmacophore discovery: A critical review. In: Bultinck P, De Winter H, Langenaeker, W et al., (eds) Computational medicinal chemistry for drug discovery. Marcel Dekker, New York

    Google Scholar 

  54. Head RD, Smythe ML, Oprea TI et al. (1996) VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands. J Am Chem Soc 118:3959–3969

    Article  CAS  Google Scholar 

  55. Di Santo R, Costi R, Artico M et al. (2002) Design, synthesis and QSAR studies on N-aryl heteroarylisopropanolamines, a new class of non-peptidic HIV-1 protease inhibitors. Bioorg Med Chem 10:2511–2526

    Article  CAS  Google Scholar 

  56. Ortiz AR, Pisabarro MT, Gago F et al. (1995) Prediction of drug binding affinities by comparative binding energy analysis. J Med Chem 38:2681–2691

    Article  CAS  Google Scholar 

  57. Martin-Santamaria S, Munoz-Muriedas J, Luque FJ et al. (2004) Modulation of binding strength in several classes of active site inhibitors of acetylcholinesterase studied by comparative binding energy analysis. J Med Chem 47:4471–4482

    Article  CAS  Google Scholar 

  58. Murcia M, Ortiz AR (2004) Virtual screening with flexible docking and COMBINE-based models. Application to a series of factor Xa inhibitors. J Med Chem 47:805–820

    Article  CAS  Google Scholar 

  59. Wang T, Wade RC (2002) Comparative binding energy (COMBINE) analysis of OppA-peptide complexes to relate structure to binding thermodynamics. J Med Chem 45:4828–4837

    Article  CAS  Google Scholar 

  60. Wang T, Wade RC (2001) Comparative binding energy (COMBINE) analysis of influenza neuraminidase-inhibitor complexes. J Med Chem 44:961–997

    Article  CAS  Google Scholar 

  61. Kim HJ, Chae CH, Yi KY et al. (2004) Computational studies of COX-2 inhibitors: 3D QSAR and docking. Bioorg Med Chem 12:1629–1641

    Article  CAS  Google Scholar 

  62. Lushington GH, Guo JX, Wang JL (2007) Whither combine? New opportunities for receptor-based QSAR. Curr Med Chem 14:1863–1877

    Article  CAS  Google Scholar 

  63. Waller CL, Oprea TI, Giolitti A et al. (1993) Three-dimensional QSAR of human immunodeficiency virus (I) protease inhibitors. 1. A CoMFA study employing experimentally-determined alignment rules. J Med Chem 36:4152–4160

    Article  CAS  Google Scholar 

  64. Cho SJ, Garsia ML, Bier J et al. (1996) Structure-based alignment and comparative molecular field analysis of acetylcholinesterase inhibitors. J Med Chem 39:5064–5071

    Article  CAS  Google Scholar 

  65. Muegge I, Podlogary BL (2001) 3D-quantitative structure–activity relationships of biphenyl carboxylic acid MMP-3 inhibitors: Exploring automated docking as alignment method. Quant Struct-Act Relat 20:215–223

    Article  CAS  Google Scholar 

  66. Costantino G, Macchiarulo A, Camaioni E et al. (2001) Modeling of poly(ADP-ribose)polymerase (PARP) inhibitors. Docking of ligands and quantitative structure–activity relationship analysis. J Med Chem 44:3786–3794

    Article  CAS  Google Scholar 

  67. Matter H, Defossa E, Heinelt U et al. (2002) Design and quantitative structure–activity relationship of 3-amidinobenzyl-1H-indole-2-carboxamides as potent, nonchiral, and selective inhibitors of blood coagulation factor Xa. J Med Chem 45:2749–2769

    Article  CAS  Google Scholar 

  68. Matter H, Schudok M, Schwab W et al. (2002) Tetrahydroisoquinoline-3-carboxylate based matrix-metalloproteinase inhibitors: Design, synthesis and structure–activity relationship. Bioorg Med Chem 10:3529–3544

    Article  CAS  Google Scholar 

  69. Tervo AJ, Nyroenen TH, Ronkko T et al. (2003) A structure–activity relationship study of catechol-O-methyltransferase inhibitors combining molecular docking and 3D QSAR methods. J Comput Aided Mol Des 17:797–810

    Article  CAS  Google Scholar 

  70. Tervo AJ, Nyroenen TH, Ronkko T et al. (2004) Comparing the quality and predictiveness between 3D QSAR models obtained from manual and automated alignment. J Chem Inf Comput Sci 44:807–816

    CAS  Google Scholar 

  71. Egea PF, Klahoz BP, Moras D (2000) Ligand–protein interactions in nuclear receptors of hormones. FEBS Lett 476:62–67

    Article  CAS  Google Scholar 

  72. Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases: 1. Evaluation of different docking/scoring combinations. J Med Chem 43:4759–4767

    Article  CAS  Google Scholar 

  73. Chen YZ, Zhi DG (2001) Ligand–protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 43:217–226

    Article  CAS  Google Scholar 

  74. Wolohan P, Reichert DE (2003) CoMFA and docking study of novel estrogen receptor subtype selective ligands. J Comput Aided Mol Des 17:313–328

    Article  CAS  Google Scholar 

  75. Soderholm AA, Lehtovuori PT, Nyronen TH (2005) Three-dimensional structure–activity relationships of nonsteroidal ligands in complex with androgen receptor ligand-binding domain. J Med Chem 48:917–925

    Article  CAS  Google Scholar 

  76. Ai N, DeLisle RK, Yu SJ et al. (2003) Computational models for predicting the binding affinities of ligands for the wild-type androgen receptor and a mutated variant associated with human prostate cancer. Chem Res Toxicol 16:1652–1660

    Article  CAS  Google Scholar 

  77. Moro S, Braiuca P, Deflorian F et al. (2005) Combined target-based and ligand-based drug design approach as a tool to define a novel 3D-pharmacophore model of human A3 adenosine receptor antagonists: Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives as a key study. J Med Chem 48:152–162

    Article  CAS  Google Scholar 

  78. Medina-Franco JL, Rodrýguez-Morales S, Juarez-Gordiano CA et al. (2004) Docking-based CoMFA and CoMSIA studies of non-nucleoside reverse transcriptase inhibitors of the pyridinone derivative type. J Comput Aided Mol Des 18:345–360

    Article  CAS  Google Scholar 

  79. Thaimattam R, Daga P, Rajjak SA et al. (2004) 3D QSAR CoMFA, CoMSIA studies on substituted areas as Raf-1 kinase inhibitors and its confirmation with structure-based studies. Bioorg Med Chem 12:6415–6425

    Article  CAS  Google Scholar 

  80. Sun WS, Park YS, Yoo J et al. (2003) Rational design of an indolebutanoic acid derivative as a novel aldose reductase inhibitor based on docking and 3D QSAR studies of phenethylamine derivatives. J Med Chem 46:5619–5627

    Article  CAS  Google Scholar 

  81. Kim HJ, Chae CH, Yi KY et al. (2004) Computational studies of COX-2 inhibitors: 3D-QSAR and docking. Bioorg Med Chem 12:1629–1641

    Article  CAS  Google Scholar 

  82. Ragno R, Artico M, De Martino G et al. (2005) Docking and 3D QSAR studies on indolyl aryl sulfones. Binding mode exploration at the HIV-1 reverse transcriptase non-nucleoside binding site and design of highly active N-(2-hydroxyethyl)carboxamide and N-(2-hydroxyethyl)carbohydrazide derivatives. J Med Chem 48:213–223

    Article  CAS  Google Scholar 

  83. Assefa H, Kamath S, Buolamwini JK (2003) 3D-QSAR and docking studies on 4-anilinoquinazoline and 4-anilinoquinoline epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. J Comput Aided Mol Des 17:475–493

    Article  CAS  Google Scholar 

  84. Hu X, Stebbins CE (2005) Molecular docking and 3D QSAR studies of yersinia protein tyrosine phosphatase YopH inhibitors. Bioorg Med Chem 13:1101–1109

    Article  CAS  Google Scholar 

  85. Kuo CL, Assefa H, Kamath S et al. (2004) Application of CoMFA and CoMSIA 3D QSAR and docking studies in optimization of mercaptobenzenesulfonamides as HIV-1 integrase inhibitors. J Med Chem 47:385–399

    Article  CAS  Google Scholar 

  86. Zhou Z, Madura JD (2004) 3D QSAR analysis of HIV-1 RT non-nucleoside inhibitors, TIBO derivatives based on docking conformation and alignment. J Chem Inf Comput Sci 44:2167–2178

    CAS  Google Scholar 

  87. Sutherland J, Weaver DF (2004) Three-dimensional quantitative structure–activity and structure–selectivity relationships of dihydrofolate reductase inhibitors. J Comput Aided Mol Des 18:309–331

    Article  CAS  Google Scholar 

  88. Carrieri A, Carotti A, Barreca ML et al. (2002) Binding models of reversible inhibitors to type-B monoamine oxidase. J Comput Aided Mol Des 16:769–778

    Article  CAS  Google Scholar 

  89. Sippl W, Höltje H-D (2000) Structure-based 3D-QSAR – merging the accuracy of structure-based alignments with the computational efficiency of ligand-based methods. J Mol Struct (Theochem) 503:31–50

    Article  CAS  Google Scholar 

  90. Cinone N, Höltje H-D, Carotti A (2000) Development of a unique 3D interaction model of endogenous and synthetic peripheral benzodiazepine receptor ligands. J Comput Aided Mol Des 14:753–768

    Article  CAS  Google Scholar 

  91. Hammer S, Spika L, Sippl W et al. (2003) Glucocorticoid receptor interactions with glucocorticoids: Evaluation by molecular modeling and functional analysis of glucocorticoid receptor mutants. Steroids 68:329–339

    Article  CAS  Google Scholar 

  92. Classen-Houben D, Sippl W, Höltje HD (2002) Molecular modeling on ligand-receptor complexes of protein-tyrosine-phosphatase 1B. In: Ford M, Livingstone D, Dearden J et al. (eds). EuroQSAR 2002 designing drugs and crop protectants: Processes, problems and solutions. Blackwell Publishing, Bournemouth

    Google Scholar 

  93. Broer BM, Gurrath M, Höltje H-D (2003) Molecular modelling studies on the ORL1-receptor and ORL1-agonists. J Comput Aided Mol Des 17:739–754

    Article  Google Scholar 

  94. Sippl W, Contreras JM, Parrot I et al. (2001) Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors. J Comput Aided Mol Des 15:395–410

    Article  CAS  Google Scholar 

  95. Wichapong K, Lindner M, Pianwanita S et al. (2008) Receptor-based 3D-QSAR studies of checkpoint wee1 kinase inhibitors. Eur J Med Chem 44:1383–1395

    Article  CAS  Google Scholar 

  96. Barner EL, Gray SL (1998) Donepezil in alzheimer disease. Ann Pharmacother 32:70–77

    Article  CAS  Google Scholar 

  97. Raves ML, Harel M, Pang YP et al. (1997) Structure of acetylcholinesterase complexed with the nootropic alkaloid huperzine A. Nat Struct Biol 4:57–63

    Article  CAS  Google Scholar 

  98. Contreras JM, Rival Y, Chayer S et al. (1999) Aminopyridazines as acetylcholinesterase inhibitors. J Med Chem 42:730–741

    Article  CAS  Google Scholar 

  99. Kryger G, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with E2020 (aricept): Implications for the design of new anti-alzheimer drugs. Structure Fold Des 15:297–307

    Article  Google Scholar 

  100. San Juan AA (2008) 3D-QSAR models on clinically relevant K103N mutant HIV-1 reverse transcriptase obtained from two strategic considerations. Bioorg Med Chem Lett 18:1181–1194

    Article  CAS  Google Scholar 

  101. Pately PD, Pately MR, Kaushik-Basu N et al. (2008) 3D QSAR and molecular docking studies of benzimidazole derivatives as hepatitis C virus NS5B polymerase inhibitors. J Chem Inf Model 48:42–51

    Article  CAS  Google Scholar 

  102. Murumkar PR, Giridhar R, Yadav MR (2008) 3D-quantitative structure–activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-α converting enzyme. Chem Biol Drug Des 71:363–373

    Article  CAS  Google Scholar 

  103. Muddassar M, Pasha FA., Chung HW et al. (2008) Receptor guided 3D-QSAR: A useful approach for designing of IGF-1R inhibitors. J Biomed Biotech 2008:837653

    Article  CAS  Google Scholar 

  104. San Juan AA (2008) Towards predictive inhibitor design for the EGFR autophosphorylation activity. Eur J Med Chem 43:781–791

    Article  CAS  Google Scholar 

  105. Fischer B, Fukuzawa K, Wenzel W (2008) Receptor-specific scoring functions derived from quantum chemical models improve affinity estimates for in silico drug discovery. Proteins 70:1264–1273

    Article  CAS  Google Scholar 

  106. Roncaglioni A, Benfenati E (2008) In silico-aided prediction of biological properties of chemicals: Oestrogen receptor-mediated effects. Chem Soc Rev 37:441–450

    Article  CAS  Google Scholar 

  107. Sadeghian H, Seyedi SM, Saberi MR et al. (2008) Design and synthesis of eugenol derivatives, as potent 15-lipoxygenase inhibitors. Bioorg Med Chem 16:890–901

    Article  CAS  Google Scholar 

  108. Holder S, Lilly M, Brown ML (2007) Comparative molecular field analysis of flavonoid inhibitors of the PIM-1 kinase. Bioorg Med Chem 15:6463–6473

    Article  CAS  Google Scholar 

  109. Abu Hammad AM, Afifi FU, Taha MO (2007) Combining docking, scoring and molecular field analyses to probe influenza neuraminidase-ligand interactions. J Mol Graph Model 26:443–456

    Article  CAS  Google Scholar 

  110. Dezi C, Brea J, Alvarado M et al. (2007) Multistructure 3D-QSAR studies on a series of conformationally constrained butyrophenones docked into a new homology model of the 5-HT2A receptor. J Med Chem 50:3242–3255

    Article  CAS  Google Scholar 

  111. Korhonen S-P, Tuppurainen K, Asikainen A et al. (2007) SOMFA on large diverse xenoestrogen dataset: The effect of superposition algorithms and external regression tools. QSAR Comb Sci 26:809–819

    Article  CAS  Google Scholar 

  112. Du L, Li M, You Q et al. (2007) A novel structure-based virtual screening model for the hERG channel blockers. Biochem Biophys Res Commun 355:889–894

    Article  CAS  Google Scholar 

  113. Tuccinardi T, Ortore G, Rossello A et al. (2007) Homology modeling and receptor-based 3D-QSAR study of carbonic anhydrase IX. J Chem Inf Model 47:2253–2262

    Article  CAS  Google Scholar 

  114. Pissurlenkar RRS, Shaikh MS, Coutinho EC (2007) 3D-QSAR studies of dipeptidyl peptidase IV inhibitors using a docking based alignment. J Mol Mod 13:1047–1071

    Article  CAS  Google Scholar 

  115. Tuccinardi T, Nuti E, Ortore G. et al. (2007) Analysis of human carbonic anhydrase II: Docking reliability and receptor-based 3D-QSAR study. J Chem Inf Model 47:515–525

    Article  CAS  Google Scholar 

  116. Huang H, Pan X, Tan N et al. (2007) 3D-QSAR study of sulfonamide inhibitors of human carbonic anhydrase II. Eur J Med Chem 42:365–372

    Article  CAS  Google Scholar 

  117. Jójárt B, Márki A (2007) Receptor-based QSAR studies of non-peptide human oxytocin receptor antagonists. J Mol Graph Model 25:711–720

    Article  CAS  Google Scholar 

  118. Jacobsson M, Liden P, Stjernschantz E et al. (2003) Improving structure-based virtual screening by multivariate analysis of scoring data. J Med Chem 46:5781–5789

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Sippl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sippl, W. (2010). 3D-QSAR – Applications, Recent Advances, and Limitations. In: Puzyn, T., Leszczynski, J., Cronin, M. (eds) Recent Advances in QSAR Studies. Challenges and Advances in Computational Chemistry and Physics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9783-6_4

Download citation

Publish with us

Policies and ethics