Skip to main content

Flux Balance Analysis of Mammalian Cell Systems

  • Protocol
  • First Online:
Mammalian Synthetic Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2774))

  • 302 Accesses

Abstract

Flux balance analysis (FBA) is a computational methodology to model and analyze the metabolic behavior of cells. In this chapter, we break down the key steps for formulating an FBA model and other FBA-derived methodologies in the context of mammalian cell biology, including strain design, developing cell line-specific models, and conducting flux sampling. We provide annotated COBRApy code for each step to show how it would work in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hefzi H, Ang KS, Hanscho M et al (2016) A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst 3:434–443

    Article  CAS  PubMed Central  Google Scholar 

  2. Yeo HC, Hong J, Lakshmanan M et al (2020) Enzyme capacity-based genome scale modelling of CHO cells. Metab Eng 60:138–147

    Article  CAS  Google Scholar 

  3. Brunk E, Sahoo S, Zielinski DC et al (2018) Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat Biotechnol 36:272–281

    Article  CAS  PubMed Central  Google Scholar 

  4. Fouladiha H, Marashi SA, Torkashvand F et al (2020) A metabolic network-based approach for developing feeding strategies for CHO cells to increase monoclonal antibody production. Bioprocess Biosyst Eng 43:1381–1389

    Article  CAS  Google Scholar 

  5. Schinn SM, Morrison C, Wei W et al (2021) A genome-scale metabolic network model and machine learning predict amino acid concentrations in Chinese Hamster Ovary cell cultures. Biotechnol Bioeng 118:2118–2123

    Article  CAS  Google Scholar 

  6. Kol S, Ley D, Wulff T et al (2020) Multiplex secretome engineering enhances recombinant protein production and purity. Nat Commun 11:1908

    Article  CAS  PubMed Central  Google Scholar 

  7. Gatto F, Ferreira R, Nielsen J (2020) Pan-cancer analysis of the metabolic reaction network. Metab Eng 57:51–62

    Article  CAS  Google Scholar 

  8. Argmann CA, Houten SM, Zhu J et al (2016) A next generation multiscale view of inborn errors of metabolism. Cell Metab 23:13–26

    Article  CAS  Google Scholar 

  9. Ebrahim A, Lerman JA, Palsson BO et al (2013) COBRApy: COnstraints-based reconstruction and analysis for python. BMC Syst Biol 7:74

    Article  PubMed Central  Google Scholar 

  10. King ZA, Lu J, Dräger A et al (2016) BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res 44:D515–D522

    Article  CAS  Google Scholar 

  11. Henry CS, Dejongh M, Best AA et al (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982

    Article  CAS  Google Scholar 

  12. Ganter M, Bernard T, Moretti S et al (2013) MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics 29:815–816

    Article  CAS  PubMed Central  Google Scholar 

  13. Malik-Sheriff RS, Glont M, Nguyen TVN et al (2020) BioModels-15 years of sharing computational models in life science. Nucleic Acids Res 48:D407–D415

    CAS  Google Scholar 

  14. Heirendt L, Arreckx S, Pfau T et al (2019) Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc 14:639–702

    Article  CAS  PubMed Central  Google Scholar 

  15. Rocha I, Maia P, Evangelista P et al (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45

    Article  PubMed Central  Google Scholar 

  16. Rowe E, Palsson BO, King ZA (2018) Escher-FBA: a web application for interactive flux balance analysis. BMC Syst Biol 12:84

    Article  PubMed Central  Google Scholar 

  17. Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 1:2

    Article  PubMed Central  Google Scholar 

  18. Dufault-Thompson K, Steffensen JL, Zhang Y (2018) Using PSAMM for the curation and analysis of genome-scale metabolic models. Methods in Molecular Biology, In, pp 131–150

    Google Scholar 

  19. Thiele S, Kamp AV, Bekiaris PS et al (2022) CNApy: a CellNetAnalyzer GUI in Python for analyzing and designing metabolic networks. Bioinformatics 38:1467–1469

    Article  CAS  Google Scholar 

  20. Papoutsakis ET (1984) Equations and calculations for fermentations of butyric acid bacteria. Biotechnol Bioeng 26:174–187

    Article  CAS  Google Scholar 

  21. Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92:1792–1805

    Article  CAS  Google Scholar 

  22. Qian H, Beard DA (2005) Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Biophys Chem 114:213–220

    Article  CAS  Google Scholar 

  23. Fleming RMT, Thiele I, Provan G et al (2010) Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. J Theor Biol 264:683–692

    Article  CAS  PubMed Central  Google Scholar 

  24. Desouki AA, Jarre F, Gelius-Dietrich G et al (2015) CycleFreeFlux: efficient removal of thermodynamically infeasible loops from flux distributions. Bioinformatics 31:2159–2165

    Article  CAS  Google Scholar 

  25. Schellenberger J, Lewis NE, Palsson B (2011) Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys J 100:544–553

    Article  CAS  PubMed Central  Google Scholar 

  26. Zhu Y, Song J, Xu Z et al (2013) Development of thermodynamic optimum searching (TOS) to improve the prediction accuracy of flux balance analysis. Biotechnol Bioeng 110:914–923

    Article  CAS  Google Scholar 

  27. Beg QK, Vazquez A, Ernst J et al (2007) Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc Natl Acad Sci U S A 104:12663–12668

    Article  CAS  PubMed Central  Google Scholar 

  28. Adadi R, Volkmer B, Milo R et al (2012) Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters. PLoS Comput Biol 8:e1002575

    Article  CAS  PubMed Central  Google Scholar 

  29. Sánchez BJ, Zhang C, Nilsson A et al (2017) Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol Syst Biol 13:935

    Article  PubMed Central  Google Scholar 

  30. Kim MK, Lane A, Kelley JJ et al (2016) E-Flux2 and sPOT: validated methods for inferring intracellular metabolic flux distributions from transcriptomic data. PLoS One 11:e0157101

    Article  PubMed Central  Google Scholar 

  31. Zur H, Ruppin E, Shlomi T (2010) iMAT: an integrative metabolic analysis tool. Bioinformatics 26:3140–3142

    Article  CAS  Google Scholar 

  32. Tian M, Reed JL (2018) Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis. Bioinformatics 34:3882–3888

    Article  CAS  PubMed Central  Google Scholar 

  33. Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4:e1000082

    Article  PubMed Central  Google Scholar 

  34. Stelling J, Klamt S, Bettenbrock K et al (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420:190–193

    Article  CAS  Google Scholar 

  35. Schilling CH, Covert MW, Famili I et al (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184:4582–4593

    Article  CAS  PubMed Central  Google Scholar 

  36. Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213:73–88

    Article  CAS  Google Scholar 

  37. Ramakrishna R, Edwards JS, McCulloch A et al (2001) Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. Am J Phys Regul Integr Comp Phys 280:R695–R704

    CAS  Google Scholar 

  38. Chen Y, McConnell BO, Gayatri Dhara V et al (2019) An unconventional uptake rate objective function approach enhances applicability of genome-scale models for mammalian cells. NPJ Syst Biol Appl 5:25

    Article  PubMed Central  Google Scholar 

  39. Lewis NE, Hixson KK, Conrad TM et al (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 6:390

    Article  PubMed Central  Google Scholar 

  40. García Sánchez CE, Vargas García CA, Torres Sáez RG (2012) Predictive potential of flux balance analysis of Saccharomyces cerevisiae using as optimization function combinations of cell compartmental objectives. PLoS One 7:e43006

    Article  PubMed Central  Google Scholar 

  41. Burgard AP, Pharkya P, Maranas CD (2003) OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657

    Article  CAS  Google Scholar 

  42. Pharkya P, Maranas CD (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng 8:1–13

    Article  CAS  Google Scholar 

  43. Ranganathan S, Suthers PF, Maranas CD (2010) OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol 6:e1000744

    Article  PubMed Central  Google Scholar 

  44. Lun DS, Rockwell G, Guido NJ et al (2009) Large-scale identification of genetic design strategies using local search. Mol Syst Biol 5:296

    Article  PubMed Central  Google Scholar 

  45. Kim J, Reed JL (2010) OptORF: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst Biol 4:53

    Article  PubMed Central  Google Scholar 

  46. Chowdhury A, Zomorrodi AR, Maranas CD (2014) k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput Biol 10:e1003487

    Article  PubMed Central  Google Scholar 

  47. Shen F, Sun R, Yao J et al (2019) Optram: in-silico strain design via integrative regulatory-metabolic network modeling. PLoS Comput Biol 15:e1006835

    Article  PubMed Central  Google Scholar 

  48. Alter TB, Ebert BE (2019) Determination of growth-coupling strategies and their underlying principles. BMC Bioinf 20:447

    Article  Google Scholar 

  49. Jensen K, Broeken V, Hansen ASL et al (2019) OptCouple: joint simulation of gene knockouts, insertions and medium modifications for prediction of growth-coupled strain designs. Metab Eng Commun 8:e00087

    Article  PubMed Central  Google Scholar 

  50. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14:2367–2376

    Article  CAS  PubMed Central  Google Scholar 

  51. Gurobi Optimization L (2023) Gurobi optimizer reference manual

    Google Scholar 

  52. Töpfer N, Jozefczuk S, Nikoloski Z (2012) Integration of time-resolved transcriptomics data with flux-based methods reveals stress-induced metabolic adaptation in Escherichia coli. BMC Syst Biol 6:148

    Article  PubMed Central  Google Scholar 

  53. Åkesson M, Förster J, Nielsen J (2004) Integration of gene expression data into genome-scale metabolic models. Metab Eng 6:285–293

    Article  Google Scholar 

  54. Schultz A, Qutub AA (2016) Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput Biol 12:1–33

    Article  Google Scholar 

  55. Agren R, Bordel S, Mardinoglu A et al (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8:e1002518

    Article  CAS  PubMed Central  Google Scholar 

  56. Wang Y, Eddy JA, Price ND (2012) Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst Biol 6:153

    Article  PubMed Central  Google Scholar 

  57. Orth JD, Conrad TM, Na J et al (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol Syst Biol 7:535

    Article  PubMed Central  Google Scholar 

  58. Orman MA, Berthiaume F, Androulakis IP et al (2011) Advanced stoichiometric analysis of metabolic networks of mammalian systems. Crit Rev Biomed Eng 39:511–534

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

Benjamin Strain would like to thank the UK Biotechnology and Biological Sciences Research Council (BBSRC) and GlaxoSmithKline for their funding and support. James Morrissey thanks the BBSRC and AstraZeneca for their funding and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleo Kontoravdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Morrissey, J., Strain, B., Kontoravdi, C. (2024). Flux Balance Analysis of Mammalian Cell Systems. In: Ceroni, F., Polizzi, K. (eds) Mammalian Synthetic Systems. Methods in Molecular Biology, vol 2774. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3718-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3718-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3717-3

  • Online ISBN: 978-1-0716-3718-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics