Skip to main content

Detection of Hypoxia in 2D and 3D Cell Culture Systems Using Genetically Encoded Fluorescent Hypoxia Sensors

  • Protocol
  • First Online:
Hypoxia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2755))

  • 365 Accesses

Abstract

In vivo oxygen availability varies widely between cellular microenvironments, depending on the tissue of origin and its cellular niche. It has long been known that too high or too low oxygen concentrations can act as a biological stressor. Thus, the precise control of oxygen availability should be a consideration for cell culture optimization, especially in the field of three-dimensional (3D) cell culture. In this chapter, we describe a system for visualizing oxygen limitations at a cellular level using human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) that were genetically modified to express a fluorescent hypoxia sensor. This sensor can detect the activation of hypoxia-induced factors (HIF) transcription factors that lead to the expression of the oxygen-independent fluorescent protein, UnaG, at low oxygen concentrations. The response of these hypoxia reporter cells can be evaluated in two-dimensional (2D) and 3D cultivation platforms during exposure to hypoxia (1% O2) and normoxia (21% O2) using fluorescence microscopy and flow cytometry. We show that hypoxia reporter MSCs exhibit a hypoxia-induced fluorescence signal in both 2D and 3D cultivation platforms with fast decay kinetics after reoxygenation, rendering it a valuable tool for studying the cellular microenvironment and regenerative potential of hAD-MSCs in an in vivo-like setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480

    Article  CAS  PubMed  Google Scholar 

  2. Lavrentieva A, Majore I, Kasper C, Hass R (2010) Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Commun Signal 8:1–9. https://doi.org/10.1186/1478-811X-8-18

    Article  CAS  Google Scholar 

  3. Grayson WL, Zhao F, Bunnell B, Ma T (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358:948–953. https://doi.org/10.1016/j.bbrc.2007.05.054

    Article  CAS  PubMed  Google Scholar 

  4. Hung SP, Ho JH, Shih YRV et al (2012) Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. J Orthop Res 30:260–266. https://doi.org/10.1002/jor.21517

    Article  PubMed  Google Scholar 

  5. Saller MM, Prall WC, Docheva D et al (2012) Increased stemness and migration of human mesenchymal stem cells in hypoxia is associated with altered integrin expression. Biochem Biophys Res Commun 423:379–385. https://doi.org/10.1016/j.bbrc.2012.05.134

    Article  CAS  PubMed  Google Scholar 

  6. Yamamoto Y, Fujita M, Tanaka Y et al (2013) Low oxygen tension enhances proliferation and maintains stemness of adipose tissue-derived stromal cells. Biores Open Access 2:199–205. https://doi.org/10.1089/biores.2013.0004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu X, Yu SP, Fraser JL et al (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135:799–808. https://doi.org/10.1016/j.jtcvs.2007.07.071

    Article  CAS  PubMed  Google Scholar 

  8. Xu Y, Malladi P, Chiou M et al (2007) In vitro expansion of adipose-derived adult stromal cells in hypoxia enhances early chondrogenesis. Tissue Eng 13:2981–2993. https://doi.org/10.1089/ten.2007.0050

    Article  CAS  PubMed  Google Scholar 

  9. Adesida AB, Mulet-Sierra A, Jomha NM (2012) Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Ther 3:9. https://doi.org/10.1186/scrt100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zscharnack M, Poesel C, Galle J, Bader A (2009) Low oxygen expansion improves subsequent chondrogenesis of ovine bone-marrow-derived mesenchymal stem cells in collagen type I hydrogel. Cells Tissues Organs 190:81–93. https://doi.org/10.1159/000178024

    Article  CAS  PubMed  Google Scholar 

  11. Pasarica M, Sereda OR, Redman LM et al (2009) Reduced adipose tissue oxygenation in human obesity evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58:718–725. https://doi.org/10.2337/db08-1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lawler HM, Underkofler CM, Kern PA et al (2016) Adipose tissue hypoxia, inflammation, and fibrosis in obese insulin-sensitive and obese insulin-resistant subjects. J Clin Endocrinol Metab 101:1422. https://doi.org/10.1210/JC.2015-4125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goossens GH, Bizzarri A, Venteclef N et al (2011) Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 124:67–76. https://doi.org/10.1161/CIRCULATIONAHA.111.027813

    Article  CAS  PubMed  Google Scholar 

  14. Huang LE, Arany Z, Livingston DM, Franklin Bunn H (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its α subunit. J Biol Chem 271:32253–32259. https://doi.org/10.1074/jbc.271.50.32253

    Article  CAS  PubMed  Google Scholar 

  15. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci 95:7987–7992. https://doi.org/10.1073/pnas.95.14.7987

  16. Salceda S, Caro J (1997) Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272:22642–22647. https://doi.org/10.1074/jbc.272.36.22642

    Article  CAS  PubMed  Google Scholar 

  17. Kallio PJ, Wilson WJ, O’Brien S et al (1999) Regulation of the hypoxia-inducible transcription factor 1α by the ubiquitin-proteasome pathway. J Biol Chem 274:6519–6525. https://doi.org/10.1074/jbc.274.10.6519

    Article  CAS  PubMed  Google Scholar 

  18. Loboda A, Jozkowicz A, Dulak J (2010) HIF-1 and HIF-2 transcription factors-similar but not identical. Mol Cells 29:435–442

    Article  CAS  PubMed  Google Scholar 

  19. Chilov D, Camenisch G, Kvietikova I et al (1999) Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): Heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1α. J Cell Sci 112:1203–1212. https://doi.org/10.1242/jcs.112.8.1203

    Article  CAS  PubMed  Google Scholar 

  20. Liu W, Shen SM, Zhao XY, Chen Dr GQ (2012) Targeted genes and interacting proteins of hypoxia inducible factor-1. Int J Biochem Mol Biol 3:165

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mole DR, Blancher C, Copley RR et al (2009) Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 284:16767. https://doi.org/10.1074/JBC.M901790200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schödel J, Oikonomopoulos S, Ragoussis J et al (2011) High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117:e207. https://doi.org/10.1182/blood-2010-10-314427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Erapaneedi R, Belousov VV, Schäfers M, Kiefer F (2016) A novel family of fluorescent hypoxia sensors reveal strong heterogeneity in tumor hypoxia at the cellular level. EMBO J 35:102–113. https://doi.org/10.15252/embj.201592775

    Article  CAS  PubMed  Google Scholar 

  24. Kumagai A, Ando R, Miyatake H et al (2013) A bilirubin-inducible fluorescent protein from eel muscle. Cell 153:1602–1611. https://doi.org/10.1016/j.cell.2013.05.038

    Article  CAS  PubMed  Google Scholar 

  25. Zhu Y, Liu T, Song K et al (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675. https://doi.org/10.1002/cbf.1488

    Article  CAS  PubMed  Google Scholar 

  26. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  27. Dienemann S, Schmidt V, Fleischhammer T et al (2023) Comparative analysis of hypoxic response of human microvascular and umbilical vein endothelial cells in 2D and 3D cell culture systems. J Cell Physiol 238:1111. https://doi.org/10.1002/JCP.31002

    Article  CAS  PubMed  Google Scholar 

  28. Shirahama H, Lee BH, Tan LP, Cho NJ (2016) Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. Sci Rep 6:1–11. https://doi.org/10.1038/srep31036

    Article  CAS  Google Scholar 

  29. Nasri M, Karimi A, Allahbakhshian Farsani M (2014) Production, purification and titration of a lentivirus-based vector for gene delivery purposes. Cytotechnology 66:1031–1038. https://doi.org/10.1007/s10616-013-9652-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burns JC, Friedmann T, Driever W et al (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci 90:8033–8037. https://doi.org/10.1073/PNAS.90.17.8033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao C, Wu N, Deng F et al (2014) Adenovirus-mediated gene transfer in mesenchymal stem cells can be significantly enhanced by the cationic polymer polybrene. PLoS One 9:e92908. https://doi.org/10.1371/JOURNAL.PONE.0092908

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schmitz C, Pepelanova I, Seliktar D et al (2020) Live reporting for hypoxia: hypoxia sensor–modified mesenchymal stem cells as in vitro reporters. Biotechnol Bioeng 117:3265–3276. https://doi.org/10.1002/bit.27503

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the German Research Foundation, DFG Project 398007461 “Biomolecular Sensor Platform for Elucidating Hypoxic Signatures in 2D and 3D in vitro culture Systems.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonina Lavrentieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fleischhammer, T.M., Dienemann, S., Ulber, N., Pepelanova, I., Lavrentieva, A. (2024). Detection of Hypoxia in 2D and 3D Cell Culture Systems Using Genetically Encoded Fluorescent Hypoxia Sensors. In: Gilkes, D.M. (eds) Hypoxia. Methods in Molecular Biology, vol 2755. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3633-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3633-6_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3632-9

  • Online ISBN: 978-1-0716-3633-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics