Skip to main content

Updating an Overview of Teratology

  • Protocol
  • First Online:
Teratogenicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2753))

  • 250 Accesses

Abstract

In this chapter, the authors aim to update an overview of the principles of teratology, beginning with the definition of teratology, the critical point at which this process occurs, and some of the most common etiological agents that improve our understanding of teratology.

Modern teratology has greatly improved in recent years with advances in new methods in molecular biology, toxicology, animal laboratory science, and genetics, increasing our knowledge of ambient influences. Nevertheless, there is a lot to do to reduce the influence of hazardous intervening agents, whether they target our genetics or not, that can negatively affect pregnancy and induce congenital development disorders, including morphological, biochemical, or behavioral defects.

Certain agents might indeed be related to certain defects, but we have not been able to identify the cause of most congenital defects, which highlights the importance of finding and testing out new genetics techniques and conducting laboratory animal science to unravel the etiology and pathogenicity of each congenital defect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadler TW (2015) Chapter 9 – Birth defects and prenatal diagnosis. In: Langman’s medical embryology, 13th edn. Wolters Kluwer Health, Philadelphia

    Google Scholar 

  2. Ujházy E, Mach M, Navarová J, Brucknerová I, Dubovický M (2012) Teratology – past, present and future. Interdiscip Toxicol 5(4):163–168

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sadler TW (2015) Chapter 6 – Third to eighth weeks: the embryonic period. In: Langman’s medical embryology, 13th edn. Wolters Kluwer Health, Philadelphia

    Google Scholar 

  4. Feldkamp ML, Botto LD, Carey JC (2015) Reflections on the etiology of structural birth defects: established teratogens and risk factors. Birth Defects Res A Clin Mol Teratol 103:652–655

    Article  PubMed  CAS  Google Scholar 

  5. Rimawi I, Ornoy A, Yanai J (2021) Paternal and/or maternal preconception-induced neurobehavioral teratogenicity in animal and human models. Brain Res Bull 174:103–121. https://doi.org/10.1016/j.brainresbull.2021.05.026

    Article  PubMed  CAS  Google Scholar 

  6. McFadden DE, Friedman JM (1997) Chromosome abnormalities in human beings. Mutat Res 396:129–140

    Article  PubMed  CAS  Google Scholar 

  7. Guerneri S, Bettio D, Simoni G, Brambati B, Lamzani A, Fraccaro M (1987) Prevalence and distribution of chromosome abnormalities in a sample of first trimester internal abortions. Hum Reprod 8:735–739

    Article  Google Scholar 

  8. Gilbert-Barness E, Debich-Spicer D (2004) Embryo and fetal pathology. Color atlas with ultrasound correlation. Cambridge University Press, Cambridge

    Google Scholar 

  9. Murphy E (2015) Medical problems in obstetrics: inherited metabolic disease. Best Pract Res Clin Obstet Gynaecol 29:707–720. https://doi.org/10.1016/j.bpobgyn.2015.04.006

    Article  PubMed  Google Scholar 

  10. Murphy E (2015) Pregnancy in women with inherited metabolic disease. Obstet Med 8(2):61–67. https://doi.org/10.1177/1753495X15576442

    Article  PubMed  PubMed Central  Google Scholar 

  11. Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalaninehydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1667–1723

    Google Scholar 

  12. Waisbren SE, Azen C (2003) Cognitive and behavioral development in maternal phenylketonuria offspring. Pediatrics 112(6 Pt 2):1544–1547

    Article  PubMed  Google Scholar 

  13. Caletti MT, Bettocchi I, Baronio F et al (2020) Maternal PKU: defining phenylalanine tolerance and its variation during pregnancy, according to genetic background. Nutr Metab Cardiovasc Dis J30(6):977–983. https://doi.org/10.1016/j.numecd.2020.02.003

    Article  CAS  Google Scholar 

  14. Rovelli V, Longo N (2023) Phenylketonuria and the brain. Mol Genet Metab 139(1):107583. https://doi.org/10.1016/j.ymgme.2023.107583

    Article  PubMed  CAS  Google Scholar 

  15. Koch R, Verma S, Gilles FH (2008) Neuropathology of a 4-month-old infant born to a woman with phenylketonuria. Dev Med Child Neurol 50(3):230–233. https://doi.org/10.1111/j.1469-8749.2008.02028.x

    Article  PubMed  Google Scholar 

  16. Keller K, McCune H, Williams C et al (2000) Lobar holoprosencephaly in an infant born to a mother with classic phenylketonuria. Am J Med Genet 95(2):187–188. https://doi.org/10.1002/1096-8628

    Article  PubMed  CAS  Google Scholar 

  17. Costa LG, Guizzetti M, Burry M et al (2002) Developmental neurotoxicity: do similar phenotypes indicate a common mode of action? A comparison of fetal alcohol syndrome, toluene embryopathy and maternal phenylketonuria. Toxicol Lett 127(1–3):197–205. https://doi.org/10.1016/s0378-4274(01)00501-x

    Article  PubMed  CAS  Google Scholar 

  18. Oberdoerster J, Guizzetti M, Costa LG (2000) Effect of phenylalanine and its metabolites on the proliferation and viability of neuronal and astroglial cells: possible relevance in maternal phenylketonuria. J Pharmacol Exp Ther 295(1):295–301

    PubMed  CAS  Google Scholar 

  19. Wen GY, Wisniewski HM, Shek JW et al (1980) Neuropathology of phenylacetate poisoning in rats: an experimental model of phenylketonuria. Ann Neurol 7(6):557–566. https://doi.org/10.1002/ana.410070609

    Article  PubMed  CAS  Google Scholar 

  20. Denno KM, Sadler TW et al (1990) Phenylalanine and its metabolites induce embryopathies in mouse embryos in culture. Teratology 42(5):565–570. https://doi.org/10.1002/tera.1420420513

    Article  PubMed  CAS  Google Scholar 

  21. Hawks Z, Hood AM, Lerman-Sinkoff DB et al (1990) White and gray matter brain development in children and young adults with phenylketonuria. Neuroimage Clin 23:101916. https://doi.org/10.1016/j.nicl.2019.101916

    Article  Google Scholar 

  22. Romani C, Palermo L, MacDonald A et al (2017) The impact of phenylalanine levels on cognitive outcomes in adults with phenylketonuria: effects across tasks and developmental stages. Neuropsychology 31(3):242–254. https://doi.org/10.1037/neu0000336

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aguiar A, Ahring K, Almeida MF, Assoun M, Belanger Quintana A, Bigot S, Bihet G, Blom Malmberg K, Burlina A, Bushueva T, Caris A, Chan H, Clark A, Clark S, Cochrane B, Corthouts K, Dalmau J, Dassy M, De Meyer A, Didycz B, Diels M, Dokupil K, Dubois S, Eftring K, Ekengren J, Ellerton C, Evans S, Faria A, Fischer A, Ford S, Freisinger P, Giżewska M, Gokmen-Ozel H, Gribben J, Gunden F, Heddrich-Ellerbrok M, Heiber S, Heidenborg C, Jankowski C, Janssen-Regelink R, Jones I, Jonkers C, Joerg-Streller M, Kaalund-Hansen K, Kiss E, Lammardo AM, Lang K, Lier D, Lilje R, Lowry S, Luyten K, MacDonald A, Meyer U, Moor D, Pal A, Robert M, Robertson L, Rocha JC, Rohde C, Ross K, Saruhan S, Sjöqvist E, Skeath R, Stoelen L, Ter Horst NM, Terry A, Timmer C, Tuncer N, Vande Kerckhove K, van der Ploeg L, van Rijn M, van Spronsen FJ, van Teeffelen-Heithoff A, van Wegberg A, van Wyk K, Vasconcelos C, Vitoria I, Wildgoose J, Webster D, White FJ, Zweers H (2015) Practices in prescribing protein substitutes for PKU in Europe: no uniformity of approach. Mol Genet Metab 115(1):17–22. https://doi.org/10.1016/j.ymgme.2015.03.006

    Article  PubMed  CAS  Google Scholar 

  24. Khoury MJ, Cordero JF, Greenberg F, James LM, Erickson JD (1983) A population study of the VACTERL association: evidence for its etiologic heterogeneity. Pediatrics 71:815–820

    Article  PubMed  CAS  Google Scholar 

  25. Castori M, Rinaldi R, Capocaccia P, Roggini M, Grammatico P (2008) VACTERL association and maternal diabetes: a possible causal relationship? Birth Defects Res A Clin Mol Teratol 82(3):169–172. https://doi.org/10.1002/bdra.20432

    Article  PubMed  CAS  Google Scholar 

  26. Gilbert-Barness E (2010) Teratogenic causes of malformations. Ann Clin Lab Sci 40(2):99–114

    PubMed  CAS  Google Scholar 

  27. Mills JL (2010) Malformations in infants of diabetic mothers. Birth Defects Res A Clin Mol Teratol 88(10):769–778. https://doi.org/10.1002/bdra.20757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Simeone RM, Devine OJ, Marcinkevage JA, Gilboa SM, Razzaghi H, Bardenheier BH, Sharma AJ, Honein MA (2015) Diabetes and congenital heart defects: a systematic review, meta-analysis, and modeling project. Am J Prev Med 48(2):195–204. https://doi.org/10.1016/j.amepre.2014.09.002

    Article  PubMed  Google Scholar 

  29. Hoang TT, Marengo LK, Mitchell LE, Canfield MA, Agopian AJ (2017) Original findings and updated meta-analysis for the association between maternal diabetes and risk for congenital heart disease phenotypes. Am J Epidemiol 186(1):118–128. https://doi.org/10.1093/aje/kwx033

    Article  PubMed  PubMed Central  Google Scholar 

  30. Basu M, Garg V (2018) Maternal hyperglycemia and fetal cardiac development: clinical impact and underlying mechanisms. Birth Defects Res 110(20):1504–1516. https://doi.org/10.1002/bdr2.1435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Basu M, Zhu JY, LaHaye S et al (2017) Epigenetic mechanisms underlying maternal diabetes-associated risk of congenital heart disease. JCI Insight 2(20):e95085. https://doi.org/10.1172/jci.insight.95085

    Article  PubMed  PubMed Central  Google Scholar 

  32. Maduro C, Castro LF, Moleiro ML et al (2022) Pregestational diabetes and congenital heart defects. Rev Bras Ginecol Obstet 44(10):953–961. https://doi.org/10.1055/s-0042-1755458

    Article  PubMed  PubMed Central  Google Scholar 

  33. Smallridge RC, Landenson PW (2001) Hypothyroidism in pregnancy: consequences to neonatal health. J Clin Endocrinol Metabol 86(6):2349–2353

    Article  CAS  Google Scholar 

  34. Sahay RK, Nagesh VS (2012) Hypothyroidism in pregnancy. Indian J Endocrinol Metab 16(3):364–370. https://doi.org/10.4103/2230-8210.95667

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chaijan PY, Dorreh F, Sharafkhah M, Amiri M, Ebrahimimonfared M, Rafeie M, Safi F (2017) Congenital urogenital abnormalities in children with congenital hypothyroidism. Med J Islam Repub Iran 31:7. https://doi.org/10.18869/mjiri.31.7

    Article  Google Scholar 

  36. Sutandar M, Garcia-Bournissen F, Koren G (2007) Hypothyroidism in pregnancy. J Obstet Gynaecol Can 29(4):354–356. https://doi.org/10.4103/2230-8210.95667

    Article  PubMed  Google Scholar 

  37. Inoue M, Arata N, Koren G, Ito S (2009) Hyperthyroidism during pregnancy. Can Fam Physician 55:701–703

    PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Sun XL, Wang CL, Zhang HY (2017) Influence of screening and intervention of hyperthyroidism on pregnancy outcome. Eur Rev Med Pharmacol Sci 21(8):1932–1937

    PubMed  CAS  Google Scholar 

  39. Springer D, Jiskra J, Limanova Z, Zima T, Potlukova E (2017) Thyroid in pregnancy: from physiology to screening. Crit Rev Clin Lab Sci 54(2):102–116. https://doi.org/10.1080/10408363.2016.1269309

    Article  PubMed  CAS  Google Scholar 

  40. Pande A, Anjankar A (2023) A narrative review on the effect of maternal hypothyroidism on fetal development. Cureus 15(2):e34824. https://doi.org/10.7759/cureus.34824

    Article  PubMed  PubMed Central  Google Scholar 

  41. Beck AJ, Reddy VM, Sulkin T et al (2022) Management of severe and symptomatic primary hyperparathyroidism in the first trimester of unplanned pregnancy. Endocrinol Diabetes Metab Case Rep 2022:21–0203. https://doi.org/10.1530/EDM-21-0203

  42. Ramhøj L, Guyot R, Svingen T et al (2022) Is periventricular heterotopia a useful endpoint for developmental thyroid hormone system disruption in mouse toxicity studies? Regul Toxicol Pharmacol 142:105445. https://doi.org/10.1016/j.yrtph.2023.105445

    Article  CAS  Google Scholar 

  43. MacKenzie-Feder J, Sirrs S, Anderson D, Sharif J, Khan A (2011) Primary hyperparathyroidism: an overview. Int J Endocrinol 2011:251410. https://doi.org/10.1155/2011/251410

    Article  PubMed  PubMed Central  Google Scholar 

  44. Som M, Stroup JS (2011) Primary hyperparathyroidism and pregnancy. Proc (Bayl Univ Med Cent) 24(3):220–223

    PubMed  Google Scholar 

  45. Komarowska H, Bromińska B, Luftmann B, Ruchała M (2017) Primary hyperparathyroidism in pregnancy- a review of literature. Ginekol Pol 88(5):270–275. https://doi.org/10.5603/GP.a2017.0051

    Article  PubMed  Google Scholar 

  46. Kokrdova Z (2010) Pregnancy and primary hyperparathyroidism. J Obstet Gynaecol 30(1):57–59. https://doi.org/10.3109/01443610903315611

    Article  PubMed  CAS  Google Scholar 

  47. Gokkaya N, Gungor A, Bilen A, Bilen H, Gviniashvili D, Karadeniz Y (2016) Primary hyperparathyroidism in pregnancy: a case series and literature review. Gynecol Endocrinol 32(10):783–786. https://doi.org/10.1080/09513590.2016.1188916

    Article  PubMed  CAS  Google Scholar 

  48. Schnatz PF, Curry SL (2002) Primary hyperparathyroidism in pregnancy: evidence-based management. Obstet Gynecol Surv 57(6):365–376. https://doi.org/10.1097/01.OGX.0000017377.65823.CA

    Article  PubMed  Google Scholar 

  49. Ullah MI, Uwaifo GI, Koch CA (2017) Primary hyperparathyroidismand hypercalcemia during pregnancy. Horm Metab Res 49(8):638–641. https://doi.org/10.1055/s-0043-112348

    Article  PubMed  CAS  Google Scholar 

  50. Callies K, Arit W, Scholz HJ, Reincke M, Allolio B (1998) Management of hypoparathyroidism during pregnancy – report of twelve cases. Eur J Endocrinol 139:284–289

    Article  PubMed  CAS  Google Scholar 

  51. Hatswell BL, Allan CA, Teng J, Wong P, Ebeling PR, Wallace EM, Fuller PJ, Milat F (2015) Management of hypoparathyroidism in pregnancy and lactation – a report of 10 cases. Bone Rep 30(3):15–19. https://doi.org/10.1016/j.bonr.2015.05.005

    Article  Google Scholar 

  52. Saada M, Sanchez-Jimenez E, Roguin A (2023) Risk of ionizing radiation in pregnancy: just a myth or a real concern? Europace 25(2):270–276. https://doi.org/10.1093/europace/euac158

    Article  PubMed  Google Scholar 

  53. American College of Obstetricians and Gynecologists’ Committee on Obstetric Practice (2016) Committee Opinion No. 656: guidelines for diagnostic imaging during pregnancy and lactation. Obstet Gynecol 127(2):e75–e80. https://doi.org/10.1097/AOG.0000000000001316

    Article  Google Scholar 

  54. Cheney AE, Vincent LL, McCabe JM et al (2021) Pregnancy in the cardiac catheterization laboratory: a safe and feasible endeavor. Circ Cardiovasc Interv 14(4):e009636. https://doi.org/10.1161/CIRCINTERVENTIONS.120.009636

    Article  PubMed  Google Scholar 

  55. Wertelecki W (2010) Malformations in a chornobyl-impacted region. Pediatrics 125:836–843. https://doi.org/10.1542/peds.2009-2219

    Article  Google Scholar 

  56. Scherb H, Voigt K, Kusmierz R (2015) Ionizing radiation and the human gender proportion at birth – a concise review of the literature and complementary analyses of historical and recent data. Early Hum Dev 91:841–850. https://doi.org/10.1016/j.earlhumdev.2015.10.012

    Article  PubMed  Google Scholar 

  57. Feshchenko SP, Schroder HC, Muller WEG, Lazjuk GI (2002) Congenital malformations among newborns and developmental abnormalities among human embryos in Belarus after Chernobyl accident. Cell Mol Biol 48(4):423–426

    PubMed  CAS  Google Scholar 

  58. Edwards MJ, Saunders RD, Shiota K (2003) Effects of heat on embryos and foetuses. Int J Hyperth 19:295–324. https://doi.org/10.1080/0265673021000039628

    Article  CAS  Google Scholar 

  59. Edwards MJ (2006) Review: hyperthermia and fever during pregnancy. Birth Defects Res A Clin Mol Teratol 76:507–516. https://doi.org/10.1002/bdra.20277

    Article  PubMed  CAS  Google Scholar 

  60. Graham JM Jr, Edwards MJ, Edwards M (1998) Teratogen update: gestational effects of maternal hyperthermia due to febrile illnesses and resultant patterns of defects in humans. Teratology 58:209–221. https://doi.org/10.1002/(SICI)1096-9926(199811)58:5<209::AID-TERA8>3.0.CO;2-Q

    Article  PubMed  CAS  Google Scholar 

  61. Moretti ME, Bar-Oz B, Fried S, Koren G (2005) Maternal hyperthermia and the risk for neural tube defects in offspring: systematic review and meta-analysis. Epidemiology 16:216–219

    Article  PubMed  Google Scholar 

  62. Padmanabhan R (2006) Etiology, pathogenesis and prevention of neural tube defects. Congenit Anom (Kyoto) 46(2):55–67

    Article  PubMed  CAS  Google Scholar 

  63. Rolfe RA, Bezer JH, Kim T, Zaidon AZ, Oyen ML, Iatridis JC, Nowlan NC (2017) Abnormal fetal muscle forces result in defects in spinal curvature and alterations in vertebral segmentation and shape. J Orthop Res. https://doi.org/10.1002/jor.23518

  64. Rezai S, Faye J, Chadee A, Gottimukkala S, Upadhyay R, Lara C, Rajegowda BH, Corwin AD, Lala RV, Vernon J, Nuritdinova D, Chasen S, Henderson CE (2016) Amniotic Band Syndrome, perinatal hospice, and palliative care versus active management. Case Rep Obstet Gynecol 2016:9756987. https://doi.org/10.1155/2016/9756987

    Article  PubMed  PubMed Central  Google Scholar 

  65. Salinas-Torres VM, De La O-Espinoza EA, Salinas-Torres RA (2017) Severe intrauterine amputations in one dichorionic twin with pentalogy of Cantrell: further evidence and consideration for mechanical teratogenesis. Pediatr Dev Pathol 20(5):440–443. https://doi.org/10.1177/1093526617689896

    Article  PubMed  Google Scholar 

  66. Satake H, Ogino T, Iba K, Watanabe T, Eto J (2012) Metacarpal hypoplasia associated with congenital constriction band syndrome. J Hand Surg 37(4):760–763. https://doi.org/10.1016/j.jhsa.2012.01.014

    Article  Google Scholar 

  67. Agarwal A, Shaharyar A, Kumar A (2015) Clubfoot associated with congenital constriction band: the ponsetimethod perspective. Foot Ankle Spec 8(3):230–233. https://doi.org/10.1177/1938640014565049

    Article  PubMed  Google Scholar 

  68. Koskimies E, Syvanen J, Nietosvaara Y, Makitie O, Pakkasjarvi N (2015) Congenital constriction band syndrome with limb defects. J Pediatr Orthop 35(1):100–103. https://doi.org/10.1097/BPO.0000000000000206

    Article  PubMed  Google Scholar 

  69. Kuperman AA, Koren O (2016) Antibiotic use during pregnancy: how bad is it? BMC Med 14(1):91. https://doi.org/10.1186/s12916-016-0636-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Polifka JE, Friedman JM (1999) Clinical teratology: identifying teratogenic risks in humans. Clin Genet 56:409–420

    Article  PubMed  CAS  Google Scholar 

  71. Običan S, Scialli AR (2011) Teratogenic exposures. Am J Med Genet C Semin Med Genet 157C(3):150–169. https://doi.org/10.1002/ajmg.c.30310

    Article  PubMed  Google Scholar 

  72. Bromleya R (2016) The treatment of epilepsy in pregnancy: the neurodevelopmental risks associated with exposure to antiepileptic drugs. Reprod Toxicol 64:203–210. https://doi.org/10.1016/j.reprotox.2016.06.007

    Article  CAS  Google Scholar 

  73. Veroniki AA, Cogo E, Rios P, Straus SE, Finkelstein Y, Kealey R, Reynen E, Soobiah C, Thavorn K, Hutton B, Hemmelgarn BR, Yazdi F, D’Souza J, MacDonald H, Tricco AC (2017) Comparative safety of anti-epileptic drugs during pregnancy: a systematic review and network meta-analysis of congenital malformations and prenatal outcomes. BMC Med 15(1):95. https://doi.org/10.1186/s12916-017-0845-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Weston J, Bromley R, Jackson CF, Adab N, Clayton-Smith J, Greenhalgh J, Hounsome J, McKay AJ, Tudur Smith C, Marson AG (2016) Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child. Cochrane Database Syst Rev 11:CD010224. www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD010224.pub2/full. Accessed 20 Sept 2018

    PubMed  Google Scholar 

  75. Clayton-Smith J, Bromley R, Dean J, Journel H, Odent S, Wood A, Williams J, Cuthbert V, Hackett L, Aslam N, Malm H, James G, Westbom L, Day R, Ladusans E, Jackson A, Bruce I, Walker R, Sidhu S, Dyer C, Ashworth J, Hindley D, Diaz GA, Rawson M, Turnpenny P (2019) Diagnosis and management of individuals with Fetal Valproate Spectrum Disorder; a consensus statement from the European Reference Network for Congenital Malformations and Intellectual Disability. Orphanet J Rare Dis 14(1):180. https://doi.org/10.1186/s13023-019-1064-y

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lopez-Rangel E, Van Allen MI (2005) Prenatal exposure to fluconazole: an identifiable dysmorphic phenotype. Birth Defects Res A Clin Mol Teratol 73:919–923

    Article  PubMed  CAS  Google Scholar 

  77. Cassina M, Cagnoli GA, Zuccarello D, Di Gianantonio E, Clementi M (2017) Human teratogens and genetic phenocopies. Understanding pathogenesis through human genes mutation. Eur J Med Genet 60(1):22–31. https://doi.org/10.1016/j.ejmg.2016.09.011

    Article  PubMed  Google Scholar 

  78. Giavini E, Menegola E (2012) Biomarkers of teratogenesis: suggestions from animal studies. Reprod Toxicol 34:180–185. https://doi.org/10.1016/j.reprotox.2012.05.003

    Article  PubMed  CAS  Google Scholar 

  79. Tiboni GM, Giampietro F (2005) Murine teratology of fluconazole: evaluation of developmental phase specificity and dose dependence. Pediatr Res 58:94–99. https://doi.org/10.1203/01.PDR.0000166754.24957.73

    Article  PubMed  CAS  Google Scholar 

  80. Ornoy A, Arnon J (1993) Clinical teratology, in fetal medicine. West J Med 159:382–390

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Nahum GG, Kennedy DL (2006) Antibiotic use in pregnancy and lactation: what is and is not known about teratogenic and toxic risks. Obstet Gynecol 107(5):1120–1138. https://doi.org/10.1097/01.AOG.0000216197.26783.b5

    Article  PubMed  CAS  Google Scholar 

  82. Muanda FT, Sheehy O, Bérard A (2017) Use of antibiotics during pregnancy and risk of spontaneous abortion. CMAJ 189(17):E625–E633. https://doi.org/10.1503/cmaj.161020

    Article  PubMed  PubMed Central  Google Scholar 

  83. Van Runnard Heimel PJ, Schobben AF, Huisjes AJ, Franx A, Bruinse HW (2005) The transplacental passage of prednisolone in pregnancies complicated by early-onset HELLP syndrome. Placenta 26:842–845. https://doi.org/10.1016/j.placenta.2004.12.008

    Article  PubMed  CAS  Google Scholar 

  84. de Vetten L, van Stuijvenberg M, Kema IP, Bocca G (2017) Maternal use of prednisolone is unlikely to be associated with neonatal adrenal suppression-a single-center study of 16 cases. Eur J Pediatr 176(8):1131–1136. https://doi.org/10.1007/s00431-017-2949-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Fawcett LB, Buck SJ, Beckman DA, Brent RL (1996) Is there a no-effect dose for corticosteroid-induced cleft palate? The contribution of endogenous corticosterone to the incidence of cleft palate in mice. Pediatr Res 39(5):856–861

    Article  PubMed  CAS  Google Scholar 

  86. Bandoli G, Palmsten K, Forbess Smith CJ, Chambers CD (2017) A review of systemic corticosteroid use in pregnancy and the risk of select pregnancy and birth outcomes. Rheum Dis Clin N Am 43(3):489–502. https://doi.org/10.1016/j.rdc.2017.04.013

    Article  Google Scholar 

  87. Wallensteen L, Zimmermann M, Thomsen Sandberg M, Gezelius A, Nordenström A, Hirvikoski T, Lajic S (2016) Sex-dimorphic effects of prenatal treatment with dexamethasone. J Clin Endocrinol Metab 101(10):3838–3846. https://doi.org/10.1210/jc.2016-1543

    Article  PubMed  CAS  Google Scholar 

  88. Treffers PE, Hanselaar AG, Helmerhorst TJ, Koster ME, van Leeuwen FE (2001) Consequences of diethylstilbestrol during pregnancy; 50 years later still a significant problem. Ned Tijdschr Geneeskd 145(14):675–680

    PubMed  CAS  Google Scholar 

  89. Kalter H (2003) Teratology in the 20th century. Environmental causes of congenital malformations in humans and how they were established. Neurotoxicol Teratol 25:131–282

    Article  PubMed  CAS  Google Scholar 

  90. Saili KS, Tilton SC, Waters KM, Tanguay RL (2013) Global gene expression analysis reveals pathway differences between teratogenic and non-teratogenic exposure concentrations of bisphenol A and 17β-estradiol in embryonic zebrafish. Reprod Toxicol 38:89–101. https://doi.org/10.1016/j.reprotox.2013.03.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Morthorst JE, Korsgaard B, Bjerregaard P (2016) Severe malformations of eelpout (Zoarces viviparus) fry are induced by maternal estrogenic exposure during early embryogenesis. Mar Environ Res 113:80–87. https://doi.org/10.1016/j.marenvres.2015.11.007

    Article  PubMed  CAS  Google Scholar 

  92. Shaw GM, Lammer EJ, Velie EM (1995) Ovulation induction by clomiphene and neural tube defects. Reprod Toxicol 9(4):399–400

    Article  PubMed  CAS  Google Scholar 

  93. Dolovich LR, Addis A, Vaillancourt JMR, Power JDB, Koren G, Einarson TR (1998) Benzodiazepine use in pregnancy and major malformations or oral cleft: meta-analysis of cohort and case-control studies. BMJ 317:839–843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Takzare N, Hosseini M-J, Takzare A, Bakhtiarian A, Yarmohammadi K (2007) Teratogenic effects of Diazepam intake during pregnancy leading to cleft lip and palatal anomalies. J Med Sci 7(7):1177–1181. https://doi.org/10.1080/15376510801897739

    Article  CAS  Google Scholar 

  95. Lakehayli S, Said N, El Khachibi M, El Ouahli M, Nadifi S, Hakkou F, Tazi A (2016) Prenatal stress alters diazepam withdrawal syndrome and 5HT1A receptor expression in the raphe nuclei of adult rats. Neuroscience 330:50–56. https://doi.org/10.1016/j.neuroscience.2016.05.035

    Article  PubMed  CAS  Google Scholar 

  96. Gidai J, Acs N, Bánhidy F, Czeizel AE (2008) An evaluation of data for 10 children born to mothers who attempted suicide by taking large doses of alprazolam during pregnancy. Toxicol Ind Health 24(1–2):53–60. https://doi.org/10.1177/0748233708089017

    Article  PubMed  CAS  Google Scholar 

  97. Timmermann G, Czeizel AE, Bánhidy F, Acs N (2008) A study of the teratogenic and fetotoxic effects of large doses of barbital, hexobarbital and butobarbital used for suicide attempts by pregnant women. Toxicol Ind Health 24(1–2):109–119. https://doi.org/10.1177/0748233708089004

    Article  PubMed  CAS  Google Scholar 

  98. Maier H, Honigsmann H (1996) Concentration of etretinate in plasma and subcutaneous fat after long-term acitretin. Lancet 348(9034):1107. https://doi.org/10.1016/S0140-6736(05)64457-1

    Article  PubMed  CAS  Google Scholar 

  99. Geiger JM, Walker M (2002) Is there a reproductive safety risk inmale patients treated with acitretin (Neotigason®/Soriatane®)? Dermatology 205:105–107. https://doi.org/10.1159/000063893

    Article  PubMed  CAS  Google Scholar 

  100. Mazzu-Nascimento T, Melo DG, Morbioli GG, Carrilho E, Vianna FSL, Silva AAD, Schuler-Faccini L (2017) Teratogens: a public health issue – a Brazilian overview. Genet Mol Biol 40(2):387–397. https://doi.org/10.1590/1678-4685-GMB-2016-0179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Myers GJ, Davidson PW (1998) Prenatal methylmercury exposure and children: neurologic, developmental, and behavioral research. Environ Health Perspect 106(Suppl 3):841–847

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hong YS, Kim YM, Lee KE (2012) Methylmercury exposure and health effects. J Prev Med Public Health 45(6):353–363. https://doi.org/10.3961/jpmph.2012.45.6.353

    Article  PubMed  PubMed Central  Google Scholar 

  103. Scoville SA, Lane OP (2013) Cerebellar abnormalities typical of methylmercury poisoning in a fledged saltmarsh sparrow, Ammodramus caudacutus. Bull Environ Contam Toxicol 90(5):616–620. https://doi.org/10.1007/s00128-013-0974-y

    Article  PubMed  CAS  Google Scholar 

  104. Duan J, Hu H, Li Q, Jiang L, Zou Y, Wang Y, Sun Z (2016) Combined toxicity of silica nanoparticles and methylmercury on cardiovascular system in zebrafish (Danio rerio) embryos. Environ Toxicol Pharmacol 44:120–127. https://doi.org/10.1016/j.etap.2016.05.004

    Article  PubMed  CAS  Google Scholar 

  105. Alves AC, Monteiro MS, Machado AL, Oliveira M, Bóia A, Correia A, Oliveira N, Soares AMVM, Loureiro S (2017) Mercury levels in parturient and newborns from Aveiro region, Portugal. J Toxicol Environ Health A 19:1–13. https://doi.org/10.1080/15287394.2017.1286926

    Article  CAS  Google Scholar 

  106. Kirk LE, Jørgensen JS, Nielsen F, Grandjean P (2017) Public health benefits of hair-mercury analysis and dietary advice in lowering methylmercury exposure in pregnant women. Scand J Public Health 45(4):444–451. https://doi.org/10.1177/1403494816689310

    Article  PubMed  Google Scholar 

  107. Tatsuta N, Murata K, Iwai-Shimada M, Yaginuma-Sakurai K, Satoh H, Nakai K (2017) Psychomotor ability in children prenatally exposed to methylmercury: the 18-month follow-up of Tohoku study of child development. Tohoku J Exp Med 242(1):1–8. https://doi.org/10.1620/tjem.242.1

    Article  PubMed  Google Scholar 

  108. Bellinger DC (2005) Teratogen update: lead and pregnancy. Birth Defects Res A Clin Mol Teratol 73:409–420. https://doi.org/10.1002/bdra.20127

    Article  PubMed  CAS  Google Scholar 

  109. Moore JA (1995) An assessment of lithium using the IEHR evaluative process for assessing human developmental and reproductive toxicity of agents. Reprod Toxicol 9(2):175–210

    Article  PubMed  CAS  Google Scholar 

  110. Qureshi WM, Latif ML, Parker TL, Pratten MK (2014) Lithium carbonate teratogenic effects in chick cardiomyocyte micromass system and mouse embryonic stem cell derived cardiomyocyte--possible protective role of myo-inositol. Reprod Toxicol 46:106–114. https://doi.org/10.1016/j.reprotox.2014.03.009

    Article  PubMed  CAS  Google Scholar 

  111. Di Florio A, Munk-Olsen T, Bergink V (2017) Lithium use in pregnancy and the risk of cardiac malformations. N Engl J Med 377(9):893. https://doi.org/10.1056/NEJMc1708919

    Article  PubMed  Google Scholar 

  112. Dodo T, Uchida K, Hirose T, Fukuta T, Kojima C, Shiraishi I, Kato E, Horiba T, Mineshima H, Okuda Y, Maeda M, Katsutani N, Hirano K, Aoki T (2010) Increases in discontinuous rib cartilage and fused carpal bone in rat fetuses exposed to the teratogens, busulfan, acetazolamide, vitamin A, and ketoconazole. Hum Exp Toxicol 29(6):439–450

    Article  PubMed  CAS  Google Scholar 

  113. Al-Saleem AI, Al-Jobair AM (2016) Possible association between acetazolamide administration during pregnancy and multiple congenital malformations. Drug Des Devel Ther 10:1471–1476. https://doi.org/10.2147/DDDT.S99561

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gonzalez CH, Marques-Dias MJ, Kim CA, Sugayama SM, Da Paz JA, Huson SM, Holmes LB (1998) Congenital abnormalities in Brazilian children associated with misoprostol misuse in first trimester of pregnancy. Lancet 351:1624–1627. https://doi.org/10.1016/S0140-6736(97)12363-7

    Article  PubMed  CAS  Google Scholar 

  115. da Silva Dal Pizzol T, Knop FP, Mengue SS (2006) Prenatal exposure to misoprostol and congenital anomalies: systematic review and meta-analysis. Reprod Toxicol 22:666–671. https://doi.org/10.1016/j.reprotox.2006.03.015

    Article  PubMed  CAS  Google Scholar 

  116. Allen R, O’Brien BM (2009) Uses of misoprostol in obstetrics and gynecology. Rev Obstet Gynecol 2:159–168. https://doi.org/10.3909/riog0055

    Article  PubMed  PubMed Central  Google Scholar 

  117. Dellicour S, Sevene E, McGready R, Tinto H, Mosha D, Manyando C, Rulisa S, Desai M, Ouma P, Oneko M, Vala A, Rupérez M, Macete E, Menéndez C, Nakanabo-Diallo S, Kazienga A, Valéa I, Calip G, Augusto O, Genton B, Njunju EM, Moore KA, d’Alessandro U, Nosten F, Kuile FT, Stergachis A (2017) First-trimester artemisinin derivatives and quinine treatments and the risk of adverse pregnancy outcomes in Africa and Asia: a meta-analysis of observational studies. PLoS Med 14(5):e1002290. https://doi.org/10.1371/journal.pmed.1002290

    Article  PubMed  PubMed Central  Google Scholar 

  118. Burger RJ, van Eijk AM, Bussink M, Hill J, Ter Kuile FO (2015) Artemisinin-based combination therapy versus quinine or other combinations for treatment of uncomplicated plasmodium falciparum malaria in the second and third trimester of pregnancy: a systematic review and meta-analysis. Open Forum Infect Dis 3(1):ofv170. https://doi.org/10.1093/ofid/ofv170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Hall JG, Pauli RM, Wilson KM (1980) Maternal and fetal sequelae of anticoagulation during pregnancy. Am J Med 68:122–140

    Article  PubMed  CAS  Google Scholar 

  120. Barbour LA (1997) Current concepts of anticoagulant therapy in pregnancy. Obstet Gynecol Clin N Am 24(3):499–521

    Article  CAS  Google Scholar 

  121. Menger H, Lin AE, Toriello HV, Bernert G, Spranger JW (1997) Vitamin K deficiency embryopathy: a phenocopy of the warfarin embryopathy due to a disorder of embryonic vitamin K metabolism. Am J Med Genet 72(2):129–134

    Article  PubMed  CAS  Google Scholar 

  122. Chao W-Y, Hsu C-C, Guo YL (1997) Middle-ear disease in children exposed prenatally to polychlorinated biphenyls and polychlorinated dibenzofurans. Arch Environ Health 52(4):257–262. https://doi.org/10.1080/00039899709602195

    Article  PubMed  CAS  Google Scholar 

  123. Bjerregaard-Olesen C, Long M, Ghisari M, Bech BH, Nohr EA, Uldbjerg N, Henriksen TB, Olsen J, Bonefeld-Jørgensen EC (2017) Temporal trends of lipophilic persistent organic pollutants in serum from Danish nulliparous pregnant women 2011–2013. Environ Sci Pollut Res Int 24(20):16592–16603. https://doi.org/10.1007/s11356-017-8992-7

    Article  PubMed  CAS  Google Scholar 

  124. Man YB, Chow KL, Xing GH, Chan JKY, Wu SC, Wong MH (2017) A pilot study on health risk assessment based on body loadings of PCBs of lactating mothers at Taizhou, China, the world’s major site for recycling transformers. Environ Pollut 227:364–371. https://doi.org/10.1016/j.envpol.2017.04.069

    Article  PubMed  CAS  Google Scholar 

  125. van der Pol JG, Wolf H, Boer K, Treffers PE, Leschot NJ, Hey HA, Vos A (1992) Jejunal atresia related to the use of methylene blue in genetic amniocentesis in twins. Br J Obstet Gynaecol 99:141–143

    Article  PubMed  Google Scholar 

  126. Cragan JD (1999) Teratogen update: methylene blue. Teratology 60:42–48. https://doi.org/10.1002/(SICI)1096-9926(199907)60:1<42::AID-TERA12>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  127. Pruthi S, Haakenson C, Brost BC, Bryant K, Reid JM, Singh R, Netzel B, Boughey JC, Degnim AC (2011) Pharmacokinetics of methylene blue dye for lymphatic mapping in breast cancer-implications for use in pregnancy. Am J Surg 201(1):70–75. https://doi.org/10.1016/j.amjsurg.2009.03.013

    Article  PubMed  CAS  Google Scholar 

  128. Brent RL, Christian MS, Diener RM (2011) Evaluation of the reproductive and developmental risks of caffeine. Birth Defects Res B Dev Reprod Toxicol 92(2):152–187. https://doi.org/10.1002/bdrb.20288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Sengpiel V, Elind E, Bacelis J, Nilsson S, Grove J, Myhre R, Haugen M, Meltzer HM, Alexander J, Jacobsson B, Brantsæter AL (2013) Maternal caffeine intake during pregnancy is associated with birth weight but not with gestational length: results from a large prospective observational cohort study. BMC Med 11:42. https://doi.org/10.1186/1741-7015-11-42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Werler MM (1997) Teratogen update: smoking and reproductive outcomes. Teratology 55:382–388. https://doi.org/10.1002/(SICI)1096-9926(199706)55

    Article  PubMed  CAS  Google Scholar 

  131. Knopik VS, Maccani MA, Francazio S, McGeary JE (2013) The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev Psychopathol 24(4):1377–1390. https://doi.org/10.1017/S0954579412000776

    Article  Google Scholar 

  132. Håkonsen LB, Ernst A, Ramlau-Hansen CH (2014) Maternal cigarette smoking during pregnancy and reproductive health in children: a review of epidemiological studies. Asian J Androl 16(1):39–49. https://doi.org/10.4103/1008-682X.122351

    Article  PubMed  CAS  Google Scholar 

  133. Comasco E, Rangmar J, Eriksson UJ, Oreland L (2017) Neurological and neuropsychological effects of low and moderate prenatal alcohol exposure. Acta Physiol (Oxf). https://doi.org/10.1111/apha.12892

  134. Pascual M, Montesinos J, Montagud-Romero S, Forteza J, Rodríguez-Arias M, Miñarro J, Guerri C (2017) TLR4 response mediates ethanol-induced neurodevelopment alterations in a model of fetal alcohol spectrum disorders. J Neuroinflammation 14(1):145. https://doi.org/10.1186/s12974-017-0918-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Pearson MA, Hoyme HE, Seaver LH, Rimsza ME (1994) Toluene embryopathy: delineation of the phenotype and comparison with fetal alcohol syndrome. Pediatrics 93:211–215

    Article  PubMed  CAS  Google Scholar 

  136. Wells PG, Kim PM, Laposa RR, Nicol CJ, Parman T, Winn LM (1997) Oxidative damage in chemical teratogenesis. Mutat Res 396:65–78

    Article  PubMed  CAS  Google Scholar 

  137. Kaplan YC, Keskin-Arslan E, Küçüksolak G, Akyol F, Karadas B, Görgel SN, Kaya-Temiz T (2018) Pregnancy outcomes after maternal use of thiocolchicoside: a case series. Reprod Toxicol 76:103–108. https://doi.org/10.1016/j.reprotox.2018.01.003

    Article  PubMed  CAS  Google Scholar 

  138. Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3:294–300. https://doi.org/10.1177/1534735404270335

    Article  PubMed  CAS  Google Scholar 

  139. Hansen JM (2006) Oxidative stress as a mechanism of teratogenesis. Birth Defects Res C Embryo Today 78:293–307. https://doi.org/10.1002/bdrc.20085

    Article  PubMed  CAS  Google Scholar 

  140. van Gelder MMHJ, van Rooij IALM, Miller RK, Zielhuis GA, de Jong-van den Berg LTW, Roeleveld N (2010) Teratogenic mechanisms of medical drugs. Hum Reprod Update 16:378–394. https://doi.org/10.1093/humupd/dmp052

    Article  PubMed  CAS  Google Scholar 

  141. Bernstein N, Akram M, Yaniv-Bachrach Z, Daniyal M (2021) Is it safe to consume traditional medicinal plants during pregnancy? Phytother Res 35(4):1908–1924. https://doi.org/10.1002/ptr.6935

    Article  PubMed  CAS  Google Scholar 

  142. Stegelmeier BL, Davis TZ, Clayton MJ (2020) Plant-induced reproductive disease, abortion, and teratology in livestock. Vet Clin North Am Food Anim Pract 36(3):735–743. https://doi.org/10.1016/j.cvfa.2020.08.004

    Article  PubMed  Google Scholar 

  143. Rasti S, Ghasemi FS, Abdoli A, Piroozmand A, Mousavi SG, Fakhrie-Kashan Z (2016) ToRCH “co-infections” are associated with increased risk of abortion in pregnant women. Congenit Anom 56(2):73–78. https://doi.org/10.1111/cga.12138

    Article  Google Scholar 

  144. Pascual-Castroviejo I, Pascual-Pascual SI, Velásquez-Fragua R, Viaño López J (2012) Congenital cytomegalovirus infection and cortical/subcortical malformations. Neurologia 27(6):336–342

    Article  PubMed  CAS  Google Scholar 

  145. Bhavsar SM, Mangat C (2023) Congenital varicella syndrome. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). Available from: https://www.ncbi.nlm.nih.gov/books/NBK568794/

    Google Scholar 

  146. Banatvala JE, Brown DW (2004) Rubella. Lancet 363(9415):1127–1137. https://doi.org/10.1016/S0140-6736(04)15897-2

    Article  PubMed  CAS  Google Scholar 

  147. Neu N, Duchon J, Zachariah P (2015) ToRCH infections. Clin Perinatol 42(1):77–103, viii. https://doi.org/10.1016/j.clp.2014.11.001

    Article  PubMed  Google Scholar 

  148. Dunn D, Wallon M, Peyron F, Peterson E, Peckham C, Gilbert R (1999) Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counseling. Lancet 353:1829–1833. https://doi.org/10.1016/S0140-6736(98)08220-8

    Article  PubMed  CAS  Google Scholar 

  149. Silasi M, Cardenas I, Kwon JY, Racicot K, Aldo P, Mor G (2015) Viral infections during pregnancy. Am J Reprod Immunol 73(3):199–213. https://doi.org/10.1111/aji.12355

    Article  PubMed  PubMed Central  Google Scholar 

  150. Many A, Koren G (2006) Toxoplasmosis during pregnancy. Can Fam Physician 52(1):29–32

    PubMed  PubMed Central  Google Scholar 

  151. Nau J, Eller SK, Wenning J, Spekker-Bosker KH, Schroten H, Schwerk C, Hotop A, Groß U, Däubener W (2017) Experimental porcine Toxoplasma gondii infection as a representative model for human toxoplasmosis. Mediat Inflamm 2017:3260289. https://doi.org/10.1155/2017/3260289

    Article  CAS  Google Scholar 

  152. Bowie WR, King AS, Werker DH, Isaac-Renton JL, Bell A, Eng SB, Marion SA (1997) Outbreak of toxoplasmosis associated with municipal drinking water. The BC Toxoplasma Investigation Team. Lancet 350:173–177. https://doi.org/10.1016/S0140-6736(96)11105-3

    Article  PubMed  CAS  Google Scholar 

  153. Wallon M, Peyron F, Cornu C, Vinault S, Abrahamowicz M, Kopp CB, Binquet C (2013) Congenital toxoplasma infection: monthly prenatal screening decreases transmission rate and improves clinical outcome at age 3 years. Clin Infect Dis 56(9):1223–1231. https://doi.org/10.1093/cid/cit032

    Article  PubMed  CAS  Google Scholar 

  154. Oster ME, Riehle-Colarusso T, Correa A (2010) An update on cardiovascular malformations in congenital rubella syndrome. Birth Defects Res A Clin Mol Teratol 88:1–8. https://doi.org/10.1002/bdra.20621

    Article  PubMed  CAS  Google Scholar 

  155. Stamper RL, Lieberman MF, Drake MV (2009) Chapter 19 – Developmental and childhood glaucoma. In: Stamper RL, Lieberman MF, Drake MV (eds) Becker-Shaffer’s diagnosis and therapy of the glaucomas, 8th edn. Mosby, pp 294–329. https://doi.org/10.1016/B978-0-323-02394-8.00019-X. ISBN 9780323023948

    Chapter  Google Scholar 

  156. Forrest JM, Turnbull FM, Sholler GF (2002) Gregg’s congenital rubella patients 60 years later. Med J Aust 177:664–667

    Article  PubMed  Google Scholar 

  157. de Silva M, Munoz FM, Mcmillan M, Kawai AT, Marshall H, Macartney KK, Joshi J, Oneko M, Rose AE, Dolk H, Trotta F, Spiegel H, Tomczyk S, Shrestha A, Kochhar S, Kharbanda EO (2016) Congenital anomalies: case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 34(49):6015–6026. https://doi.org/10.1016/j.vaccine.2016.03.047

    Article  Google Scholar 

  158. Shukla S, Maraqa NF (2022) Congenital Rubella. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK507879/

    Google Scholar 

  159. Boucoiran I, Kakkar F, Renaud C (2020) Chapter 28 – Maternal infections. In: Gallagher A, Bulteau C, Cohen D, Michaud JL (eds) Handbook of clinical neurology, vol 173. Elsevier, pp 401–422. https://doi.org/10.1016/B978-0-444-64150-2.00029-0. ISSN 0072-9752

    Chapter  Google Scholar 

  160. Miller E, Cradock-Watson JE, Pollack TM (1982) Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet 2:781–784. https://doi.org/10.1016/S0140-6736(82)92677-0

    Article  PubMed  CAS  Google Scholar 

  161. Webster WS (1998) Teratogen update: Congenital rubella. Teratology 58:13–23. https://doi.org/10.1002/(SICI)1096-9926(199807)58:1<13::AID-TERA5>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  162. Temple RO, Pass RF, Boll TJ (2000) Neuropsychological functioning in patients with asymptomatic congenital cytomegalovirus infection. J Dev Behav Pediatr 21:417–422

    Article  PubMed  CAS  Google Scholar 

  163. Carrara J, Delaveaucoupet J, Cordier AG, Vauloup-Fellous C, Senat MV, Ayoubi JM, Benachi A, Picone O (2016) Detailed in utero ultrasound description of 34 cases of congenital cytomegalovirus infection. J Gynecol Obstet Biol Reprod 45(4):397–406. https://doi.org/10.1016/j.jgyn.2015.04.014

    Article  CAS  Google Scholar 

  164. Davis NL, King CC, Kourtis AP (2017) Cytomegalovirus infection in pregnancy. Birth Defects Res 109(5):336–346. https://doi.org/10.1002/bdra.23601

    Article  PubMed  CAS  Google Scholar 

  165. Marsico C, Kimberlin DW (2017) Congenital Cytomegalovirus infection: advances and challenges in diagnosis, prevention and treatment. Ital J Pediatr 43(1):38. https://doi.org/10.1186/s13052-017-0358-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Malm G, Engman M-L (2007) Congenital cytomegalovirus infections. Semin Fetal Neonatal Med 12:154–159

    Article  PubMed  Google Scholar 

  167. Engman M-L, Lewensohn-Fuchs I, Mosskin M, Malm G (2010) Congenital cytomegalovirus infection: the impact of cerebral cortical malformations. Acta Paediatr 99:1344–1349

    Article  PubMed  Google Scholar 

  168. Teissier N, Fallet-Bianco C, Delezoide A-L, Laquerrière A et al (2014) Cytomegalovirus-induced brain malformations in fetuses. J Neuropathol Exp Neurol 73(2):143–158. https://doi.org/10.1097/NEN.0000000000000038

    Article  PubMed  Google Scholar 

  169. Grosse SD, Ross DS, Dollard SC (2008) Congenital cytomegalovirus (CMV) infection as a cause of permanent bilateral hearing loss: a quantitative assessment. J Clin Virol 41:57–62. https://doi.org/10.1016/j.jcv.2007.09.004

    Article  PubMed  Google Scholar 

  170. Cannon MJ, Griffiths PD, Aston V, Rawlinson WD (2014) Universal newborn screening for congenital CMV infection: what is the evidence of potential benefit? Rev Med Virol 24:291–307. https://doi.org/10.1002/rmv.1790

    Article  PubMed  PubMed Central  Google Scholar 

  171. Picone O, Teissier N, Cordier AG, Vauloup-Fellous C, Adle-Biassette H, Martinovic J, Senat MV, Ayoubi JM, Benachi A (2014) Detailed in utero ultrasound description of 30 cases of congenital cytomegalovirus infection. Prenat Diagn 34(6):518–524. https://doi.org/10.1002/pd.4340

    Article  PubMed  CAS  Google Scholar 

  172. Enders G, Bolley I, Miller E, Cradock-Watson J, Ridehalgh M (1994) Consequences of varicella and herpes zoster in pregnancy: prospective study of 1739 cases. Lancet 343:1548–1551. https://doi.org/10.1016/S0140-6736(94)92943-2

    Article  PubMed  CAS  Google Scholar 

  173. Jones KL, Johnson KA, Chambers CD (1994) Offspring of women infected with varicella during pregnancy: a prospective study. Teratology 49:29–32. https://doi.org/10.1002/tera.1420490106

    Article  PubMed  CAS  Google Scholar 

  174. Patokar AS, Holani AR, Khatu S, Chaudhari N et al (2022) Fetal varicella syndrome: a rare case report and literature review. Clin Dermatol Rev 6(1):57. https://doi.org/10.4103/CDR.CDR_118_20

    Article  Google Scholar 

  175. Mandelbrot L (2012) Fetal varicella – diagnosis, management, and outcome. Prenat Diagn 32(6):511–518. https://doi.org/10.1002/pd.3843

    Article  PubMed  Google Scholar 

  176. Paryani SG, Arvin AM (1986) Intrauterine infection with varicella-zoster virus after maternal varicella. N Engl J Med 314:1542–1546. https://doi.org/10.1056/NEJM198606123142403

    Article  PubMed  CAS  Google Scholar 

  177. Pastaszak AL, Levy M, Schick B, Zuber C, Feldkamp M, Gladstone J, Bar-Levy F, Jackson E, Donnenfield A, Meschino W, Koren G (1994) Outcome after maternal varicella infection in the first 20 weeks of pregnancy. N Engl J Med 330:901–905. https://doi.org/10.1056/NEJM199403313301305

    Article  Google Scholar 

  178. Lamont RF, Sobel J, Vaisbuch E, Kusanovic JP, Mazaki-Tovi S, Kim SK, Uldbjerg N, Roberto Romero R (2011) Parvovirus B19 infection in human pregnancy. BJOG 118(2):175–186. https://doi.org/10.1111/j.1471-0528.2010.02749.x

    Article  PubMed  CAS  Google Scholar 

  179. Lamont RF, Sobel JD, Carrington D, Mazaki-Tovi S, Kusanovic JP, Vaisbuch E, Romero R (2011) Varicella zoster virus (chickenpox) infection in pregnancy. BJOG 118(10):1155–1162. https://doi.org/10.1111/j.1471-0528.2011.02983.x

    Article  PubMed  PubMed Central  Google Scholar 

  180. Schulert GS, Walsh WF, Weitkamp JH (2011) Polymicrogyria and congenital parvovirus B19 infection. AJP Rep 1(2):105–110. https://doi.org/10.1055/s-0031-1285984

    Article  PubMed  PubMed Central  Google Scholar 

  181. Ornoy A, Ergaz Z (2017) Parvovirus B19 infection during pregnancy and risks to the fetus. Birth Defects Res 109(5):311–323. https://doi.org/10.1002/bdra.23588

    Article  PubMed  CAS  Google Scholar 

  182. Fell DB, Savitz DA, Kramer MS, Gessner BD, Katz MA, Knight M, Luteijn JM, Marshall H, Bhat N, Gravett MG, Skidmore B, Ortiz JR (2016) Maternal influenza and birth outcomes: systematic review of comparative studies. BJOG 124(1):48–59. https://doi.org/10.1111/1471-0528.14143

    Article  PubMed  PubMed Central  Google Scholar 

  183. Katz MA, Gessner BD, Johnson J, Skidmore B, Knight M, Bhat N, Marshall H, Horne DJ, Ortiz JR, Fell DB (2017) Incidence of influenza virus infection among pregnant women: a systematic review. BMC Pregnancy Childbirth 17:155. https://doi.org/10.1186/s12884-017-1333-5

    Article  PubMed  PubMed Central  Google Scholar 

  184. Barreto de Araújo TV, Rodrigues LC, Ximenes RAA, Miranda-Filho DB, Montarroyos UR, Melo APL, Valongueiro S, Albuquerque MFPM, Souza WV, Braga C, Brandão Filho SP, Cordeiro MT, Vazquez E, Cruz DCS, Henriques CMP, Bezerra LCA, Castanha PMS, Dhalia R, Marques-Júnior ETA, Martelli CMT (2016) Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study. Lancet Infect Dis 16:1356–1363

    Article  Google Scholar 

  185. Gouzil J, Fablet A, Lara E, Caignard G, Cochet M, Kundlacz C, Palmarini M, Varela M, Breard E, Sailleau C, Viarouge C, Coulpier M, Zientara S, Vitour D (2016) Nonstructural protein NSs of Schmallenberg virus is targeted to the nucleolus and induces nucleolar disorganization. J Virol 91(1):e01263–e01216

    PubMed  PubMed Central  Google Scholar 

  186. Olmo IG, Carvalho TG, Costa VV, Alves-Silva J, Ferrari CZ, Izidoro-Toledo TC, da Silva JF, Teixeira AL, Souza DG, Marques JT, Teixeira MM, Vieira LB, Ribeiro FM (2017) Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front Immunol 8:1016

    Article  PubMed  PubMed Central  Google Scholar 

  187. De Regge N, Van den Berg T, Georges L, Cay B (2013) Diagnosis of Schmallenberg virus infection in malformed lambs and calves and first indications for virus clearance in the fetus. Vet Microbiol 162(2013):595–600

    Article  PubMed  Google Scholar 

  188. Wisløff H, Nordvik BS, Sviland S, Tønnessen R (2014) First documented clinical case of Schmallenberg virus in Norway: fetal malformations in a calf. Vet Rec 174:120

    Article  PubMed  Google Scholar 

  189. Maclachlan NJ, Osburn BI (2017) Teratogenic bluetongue and related orbivirus infections in pregnant ruminant livestock: timing and pathogen genetics are critical. Curr Opin Virol:2731–2735. https://doi.org/10.1016/j.coviro.2017.10.002

  190. Windsor P (2019) Abnormalities of development and pregnancy. In: Noakes DE, Parkinson TJ, England GCW (eds) Veterinary reproduction and obstetrics, 10th edn. W.B. Saunders, pp 168–194. https://doi.org/10.1016/b978-0-7020-7233-8.00009-4. ISBN 9780702072338

    Chapter  Google Scholar 

  191. Agerholm JS, Hewicker-Trautwein M, Peperkamp K, Windsor PA (2015) Virus-induced congenital malformations in cattle. Acta Vet Scand 57:54. https://doi.org/10.1186/s13028-015-0145-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Harter CA, Benirschke K (1976) Fetal syphilis in the first trimester. Am J Obstet Gynecol 124(705):711. https://doi.org/10.1016/S0002-9378(16)33340-3

    Article  Google Scholar 

  193. Singh AE, Romanowski B (1999) Syphilis: review with emphasis on clinical, epidemiologic, and some biologic features. Clin Microbiol Rev 12(2):187–209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. de Santis M, De Luca C, Mappa I, Spagnuolo T, Licameli A, Straface G, Scambia G (2012) Syphilis infection during pregnancy: fetal risks and clinical management. Infect Dis Obstet Gynecol:430585. https://doi.org/10.1155/2012/430585

  195. Ingall D, Norin L (2006) Syphilis. In: Remington JS, Klein JO (eds) Infectious diseases of the fetus and newborn infant, 5th edn. Saunders, Philadelphia, pp 643–681

    Google Scholar 

  196. Pereira AA, Castro AM, Venturini RR, César FO, Fortes PM, Costa PS (2017) Pseudoparalysis of parrot: a diagnostic aid in congenital syphilis. J Pediatr 190:282

    Article  PubMed  Google Scholar 

  197. Feldkamp ML, Enioutina EY, Botto LD, Krikov S, Byrne JL, Geisler WM (2015) Chlamydia trachomatis IgG3 seropositivity is associated with gastroschisis. J Perinatol 35(11):930–934. https://doi.org/10.1038/jp.2015.115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Hougland KT, Hanna AM, Meyers R, Null D (2005) Increasing prevalence of gastroschisis in Utah. J Pediatr Surg 40:535–540. https://doi.org/10.1016/j.jpedsurg.2004.11.026

    Article  PubMed  Google Scholar 

  199. Castilla EE, Mastroiacovo P, Orioli IM (2008) Gastroschisis: international epidemiology and public health perspectives. Am J Med Genet C Semin Med Genet 148C:162–179. https://doi.org/10.1002/ajmg.c.30181

    Article  PubMed  Google Scholar 

  200. Vu LT, Nobuhara KK, Laurent C, Shaw GM (2008) Increasing prevalence of gastroschisis: population-based study in California. J Pediatr 152:807–811. https://doi.org/10.1016/j.jpeds.2007.11.037

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria dos Anjos Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Calado, A.M., Seixas, F., Pires, M.d.A. (2024). Updating an Overview of Teratology. In: Félix, L. (eds) Teratogenicity Testing. Methods in Molecular Biology, vol 2753. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3625-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3625-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3624-4

  • Online ISBN: 978-1-0716-3625-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics