Skip to main content

Monitoring the Secretion and Activity of Alpha-1 Antitrypsin in Various Mammalian Cell Types

  • Protocol
  • First Online:
Alpha-1 Antitrypsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2750))

Abstract

Overexpression of recombinant protein in mammalian cells is widely used for producing biologics, as protein maturation and post-translational modifications are similar to human cells. Some therapeutics, such as mRNA vaccines, target nonnative cells that may contain inefficient secretory machinery. For example, gene replacement therapies for alpha-1 antitrypsin (AAT), a glycoprotein normally produced in hepatocytes, are often targeted to muscle cells due to ease of delivery. In this chapter, we define methods for expressing AAT in representative cell types such as Huh-7; hepatocytes; Chinese hamster ovarian cells (CHO), a common host to produce biologics; and C2C12, a muscle progenitor cell line. Methods for metabolically labeling AAT to monitor secretion in these cell lines are described along with the use of proteostasis activators to increase the amount of AAT secreted in both C2C12 myoblasts and differentiated myotubes. Assays to assess the activity and glycan composition of overexpressed AAT are also presented. The usage of the proteostasis activator SAHA provided a 40% improvement in expression of active AAT in muscle-like cells and may be an advantageous adjuvant for recombinant production of proteins delivered by mRNA vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Law RH, Zhang Q, McGowan S et al (2006) An overview of the serpin superfamily. Genome Biol 7:216

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gettins PGW (2002) Serpin structure, mechanism, and function. Chem Rev 102:4751–4804

    Article  CAS  PubMed  Google Scholar 

  3. De Serres F, Blanco I (2014) Role of alpha-1 antitrypsin in human health and disease. J Intern Med 276:311–335

    Article  PubMed  Google Scholar 

  4. Adams BM, Oster ME, Hebert DN (2019) Protein quality control in the endoplasmic reticulum. Protein J 38:317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsutsui Y, Dela Cruz R, Wintrode PL (2012) Folding mechanism of the metastable serpin α1 -antitrypsin. Proc Natl Acad Sci U S A 109:4467–4472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Greene CM, Marciniak SJ, Teckman J, Ferrarotti I, Brantly ML, Lomas DA, Stoller JK, McElvaney NG (2016) α1-antitrypsin deficiency. Nat Rev Dis Primers 2:16051

    Article  PubMed  Google Scholar 

  7. Chiuchiolo MJ, Crystal RG (2016) Gene therapy for alpha-1 antitrypsin deficiency lung disease. Annals ATS 13:S352–S369

    Article  Google Scholar 

  8. Flotte TR, Trapnell BC, Humphries M et al (2011) Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results. Hum Gene Ther 22:1239–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 36:1110–1122

    Article  CAS  PubMed  Google Scholar 

  10. Diokmetzidou A, Tsikitis M, Nikouli S, Kloukina I, Tsoupri E, Papathanasiou S, Psarras S, Mavroidis M, Capetanaki Y (2016) Strategies to study desmin in cardiac muscle and culture systems. In: Methods in enzymology. Elsevier, pp 427–459

    Google Scholar 

  11. Ke H, Guay KP, Flotte TR, Gierasch LM, Gershenson A, Hebert DN (2022) Secretion of functional α1-antitrypsin is cell type dependent: Implications for intramuscular delivery for gene therapy. Proc Natl Acad Sci 119(31):e2206103119. https://doi.org/10.1073/pnas.2206103119

  12. Stephens CJ, Kashentseva E, Everett W, Kaliberova L, Curiel DT (2018) Targeted in vivo knock-in of human alpha-1-antitrypsin cDNA using adenoviral delivery of CRISPR/Cas9. Gene Ther 25:139–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borel F, Tang Q, Gernoux G et al (2017) Survival advantage of both human hepatocyte xenografts and genome-edited hepatocytes for treatment of α-1 antitrypsin deficiency. Mol Ther 25:2477–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barzel A, Paulk NK, Shi Y et al (2015) Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature 517:360–364

    Article  CAS  PubMed  Google Scholar 

  15. Gruntman A, Xue W, Flotte T (this volume) Approaches to therapeutic gene editing in alpha-1 antitrypsin deficiency. In Bristow C (ed) Alpha-1 antitrypsin. Methods in molecular biology. Springer, New York

    Google Scholar 

  16. Ong DST, Mu T-W, Palmer AE, Kelly JW (2010) Endoplasmic reticulum Ca2+ increases enhance mutant glucocerebrosidase proteostasis. Nat Chem Biol 6:424–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thastrup O, Cullen PJ, Drøbak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A 87:2466–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Plate L, Cooley CB, Chen JJ et al (2016) Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation. eLife 5:e15550

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bouchecareilh M, Hutt DM, Szajner P, Flotte TR, Balch WE (2012) Histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA)-mediated correction of α1-antitrypsin deficiency. J Biol Chem 287:38265–38278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boyce M, Bryant KF, Jousse C et al (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939

    Article  CAS  PubMed  Google Scholar 

  21. Fu Y-L, Han D-Y, Wang Y-J, Di X-J, Yu H-B, Mu T-W (2018) Remodeling the endoplasmic reticulum proteostasis network restores proteostasis of pathogenic GABAA receptors. PLoS One 13:e0207948

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kudo T, Kanemoto S, Hara H, Morimoto N, Morihara T, Kimura R, Tabira T, Imaizumi K, Takeda M (2008) A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 15:364–375

    Article  CAS  PubMed  Google Scholar 

  23. Su Q, Sena-Esteves M, Gao G (2020) Production of recombinant adeno-associated viruses (rAAVs) by transient transfection. Cold Spring Harb Protoc 2020:095596

    PubMed  Google Scholar 

  24. Su Q, Sena-Esteves M, Gao G (2020) Purification of recombinant adeno-associated viruses (rAAVs) by cesium chloride gradient sedimentation. Cold Spring Harb Protoc 2020:pdb.prot095604

    Article  Google Scholar 

  25. Ryu S-E, Choi H-J, Kwon K-S, Lee KN, Yu M-H (1996) The native strains in the hydrophobic core and flexible reactive loop of a serine protease inhibitor: crystal structure of an uncleaved α1-antitrypsin at 2.7 Å. Structure 4(10):1181–1192

    Article  CAS  PubMed  Google Scholar 

  26. Hansen G, Gielen-Haertwig H, Reinemer P, Schomburg D, Harrenga A, Niefind K (2011) Unexpected active-site flexibility in the structure of human neutrophil elastase in complex with a new dihydropyrimidone inhibitor. J Mol Biol 409:681–691

    Article  CAS  PubMed  Google Scholar 

  27. Dementiev A, Dobó J, Gettins PGW (2006) Active site distortion is sufficient for proteinase inhibition by serpins: structure of the covalent complex of alpha1-proteinase inhibitor with porcine pancreatic elastase. J Biol Chem 281:3452–3457

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health award (GM086874 to D.N.H.) and a Chemistry-Biology Interface program training grant (T32GM139789 to K.P.G.). Funding was also provided by the Alpha-1 Foundation (to D.N.H., A.G., and L.M.G.)

Additional Information

This research was conducted while Anne Gershenson was employed at the University of Massachusetts Amherst. The opinions expressed in this article are the authors’ own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel N. Hebert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guay, K.P., Ke, H., Gierasch, L.M., Gershenson, A., Hebert, D.N. (2024). Monitoring the Secretion and Activity of Alpha-1 Antitrypsin in Various Mammalian Cell Types. In: Bristow, C.L. (eds) Alpha-1 Antitrypsin. Methods in Molecular Biology, vol 2750. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3605-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3605-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3604-6

  • Online ISBN: 978-1-0716-3605-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics