Skip to main content
Log in

Protein Quality Control in the Endoplasmic Reticulum

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The site of protein folding and maturation for the majority of proteins that are secreted, localized to the plasma membrane or targeted to endomembrane compartments is the endoplasmic reticulum (ER). It is essential that proteins targeted to the ER are properly folded in order to carry out their function, as well as maintain protein homeostasis, as accumulation of misfolded proteins could lead to the formation of cytotoxic aggregates. Because protein folding is an error-prone process, the ER contains protein quality control networks that act to optimize proper folding and trafficking of client proteins. If a protein is unable to reach its native state, it is targeted for ER retention and subsequent degradation. The protein quality control networks of the ER that oversee this evaluation or interrogation process that decides the fate of maturing nascent chains is comprised of three general types of families: the classical chaperones, the carbohydrate-dependent system, and the thiol-dependent system. The cooperative action of these families promotes protein quality control and protein homeostasis in the ER. This review will describe the families of the ER protein quality control network and discuss the functions of individual members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blobel G, Sabatini DD (1971) Ribosome-membrane interaction in eukaryotic cells. Biomem 2:193–195

    CAS  Google Scholar 

  2. Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67:835–851

    Article  CAS  PubMed  Google Scholar 

  3. Blobel G, Dobberstein B (1975) Transfer of protein across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol 67:852–862

    Article  CAS  PubMed  Google Scholar 

  4. Bulleid NJ, Freedman RB (1988) Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature 335:649–651

    Article  CAS  PubMed  Google Scholar 

  5. Nicchitta CV, Blobel G (1993) Lumenal proteins of the mammalian endoplasmic reticulum are required to complete protein translocation. Cell 73:989–998

    Article  CAS  PubMed  Google Scholar 

  6. Hebert DN, Foellmer B, Helenius A (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81:425–433

    Article  CAS  PubMed  Google Scholar 

  7. Huh W-K, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  PubMed  Google Scholar 

  8. Laskey RA, Honda B, Mills AD, Finch JT (1978) Speculations on the functions of the major heat shock and glucose-regulated proteins. Nature 275:416–420

    Article  CAS  PubMed  Google Scholar 

  9. Pelham HR (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46:959–961

    Article  CAS  PubMed  Google Scholar 

  10. Cheng MY, Hartl UF, Martin J et al (1989) Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625

    Article  CAS  PubMed  Google Scholar 

  11. Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH (1989) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP. Nature 342:884–889

    Article  CAS  PubMed  Google Scholar 

  12. Ellis JR (1996) Discovery of molecular chaperones. Cell Stress Chaperones 1:155–160

    Article  CAS  PubMed  Google Scholar 

  13. Helenius A (1989) Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol 5:277–307

    Article  PubMed  Google Scholar 

  14. Horwich A, Neupert W, Hartl UF (1990) Protein-catalysed protein folding. Trends Biotechnol 8:126–131

    Article  CAS  PubMed  Google Scholar 

  15. Hendershot LM (2004) The ER function BiP is a master regulator of ER function. Mt Sinai J Med 71:289–297

    PubMed  Google Scholar 

  16. Behnke J, Feige MJ, Hendershot LM (2015) BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 427:1589–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blond-Elguindi S, Cwirla SE, Dower WJ et al (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75:717–728

    Article  CAS  PubMed  Google Scholar 

  18. Behnke J, Mann MJ, Scruggs F-L et al (2016) Members of the Hsp70 family recognize distinct types of sequences to execute ER quality control. Mol Cell 63:739–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flynn GC, Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353:726–730

    Article  CAS  PubMed  Google Scholar 

  20. Schneider M, Rosam M, Glaser M et al (2016) BiPPred: combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP. Proteins 84:1390–1407

    Article  CAS  PubMed  Google Scholar 

  21. Schlecht R, Erbse AH, Bukau B, Mayer MP (2011) Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat Struct Mol Biol 18:345–351

    Article  CAS  PubMed  Google Scholar 

  22. Kampinga HH, Andreasson C, Barducci A et al (2018) Function, evolution, and structure of J-domain proteins. Cell Stress Chaperones 24(1):7–15

    Article  PubMed  PubMed Central  Google Scholar 

  23. Otero JH, Lizák B, Hendershot LM (2010) Life and death of a BiP substrate. Semin Cell Dev Biol 21:472–478

    Article  CAS  PubMed  Google Scholar 

  24. Boisramé A, Kabani M, Beckerich J-M et al (1998) Interaction of Kar2p and Sls1p is required for efficient co-translational translocation of secreted proteins in the yeast Yarrowia lipolytica. J Biol Chem 273:30903–30908

    Article  PubMed  Google Scholar 

  25. Kabani M, Beckerich J-M, Brodsky JL (2002) Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol Cell Biol 22:4677–4689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tyson JR, Stirling CJ (2000) LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J 19:6440–6452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chung KT, Shen Y, Hendershot LM (2002) BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 277:47557–47563

    Article  CAS  PubMed  Google Scholar 

  28. Steel GJ, Fullerton DM, Tyson JR, Stirling CJ (2004) Coordinated activation of Hsp70 chaperones. Science 303:98–101

    Article  CAS  PubMed  Google Scholar 

  29. Chen X, Easton D, Oh H-J et al (1996) The 170 kDa glucose regulated stress protein is a large HSP70- HSP110-like protein of the endoplasmic reticulum. FEBS Lett 380:68–72

    Article  CAS  PubMed  Google Scholar 

  30. Matlack KE, Misselwitz B, Plath K, Rapoport TA (1999) BiP acts as a molecular ratchet during posttranslational transport of prepro-α factor across the ER membrane author links open overlay panel. Cell 97:553–564

    Article  CAS  PubMed  Google Scholar 

  31. Helenius A, Hammond C (1994) Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266:456–458

    Article  PubMed  Google Scholar 

  32. Hebert DN, Zhang J-X, Helenius A (1998) Protein folding and maturation in a cell-free system. Biochem Cell Biol 76:867–873

    Article  CAS  PubMed  Google Scholar 

  33. Plemper RK, Böhmler S, Bordallo J et al (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388:891–895

    Article  CAS  PubMed  Google Scholar 

  34. Skowronek MH, Hendershot LM, Haas IG (1998) The variable domain of nonassembled Ig light chains determines both their half-life and binding to the chaperone BiP. Proc Natl Acad Sci USA 95:1574–1578

    Article  CAS  PubMed  Google Scholar 

  35. Brodsky JL, Werner ED, Dubas ME et al (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274:3453–3460

    Article  CAS  PubMed  Google Scholar 

  36. Farinha CM, Amaral MD (2005) Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin. Mol Cell Biol 25:5242–5252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sörgjerd K, Ghafouri B, Jonsson B-H et al (2006) Retention of misfolded mutant transthyretin by the chaperone BiP/GRP78 mitigates amyloidogenesis. J Mol Biol 356:469–482

    Article  CAS  PubMed  Google Scholar 

  38. Dong M, Bridges JP, Apsley K et al (2008) ERdj4 and ERdj5 are required for endoplasmic reticulum-associated protein degradation of misfolded surfactant protein C. Mol Biol Cell 19:2620–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amin-Wetzel N, Saunders RA, Kamphius MJ et al (2017) A J-protein co-chaperone recruits BiP to monomerize IRE1 and repress the unfolded protein response. Cell 171:1625–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cunnea PM, Miranda-Vizuete A, Bertoli G et al (2003) ERdj5, an endoplasmic reticulum (ER)-resident protein containing DnaJ and thioredoxin domains, is expressed in secretory cells or following ER stress. J Biol Chem 278:1059–1066

    Article  CAS  PubMed  Google Scholar 

  41. Ushioda R, Hoseki J, Araki K et al (2008) ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321:569–572

    Article  CAS  PubMed  Google Scholar 

  42. Khodayari N, Marek G, Lu Y et al (2017) Erdj3 Has an essential role for Z variant alpha-1-antitrypsin degradation. J Cell Biochem 118:3090–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tan YL, Genereux JC, Pankow S et al (2014) ERdj3 is an endoplasmic reticulum degradation factor for mutant glucocerebrosidase variants linked to Gaucher’s disease. Chem Biol 21:967–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rutkowski TD, Kang S-W, Goodman AG et al (2007) The role of p58IPK in protecting the stressed endoplasmic reticulum. Mol Biol Cell 18:3681–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ham H, Woolery AR, Tracy C et al (2014) Unfolded protein response-regulated Drosophila Fic protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis. J Biol Chem 289:36059–36069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anwesha S, Chen AJ, Nakayasu ES et al (2015) A novel link between Fic mediated adenylation and the unfolded protein response. J Biol Chem 290:8482–8499

    Article  CAS  Google Scholar 

  47. Preissler S, Rato C, Chen R et al (2015) AMPylation matches BiP activity to client protein load in the endoplasmic reticulum. eLife 4:e12621

    Article  PubMed  PubMed Central  Google Scholar 

  48. Preissler S, Rohland L, Yan Y et al (2017) AMPylation targets the rate-limiting step of BiP’s ATPase cycle for its functional inactivation. eLife 6:e29428

    Article  PubMed  PubMed Central  Google Scholar 

  49. Preissler S, Rato C, Perera L et al (2017) FICD acts bi-functionally to AMPylate and de-AMPylate the endoplasmic reticulum chaperone BiP. Nat Struct Mol Biol 24:23–29

    Article  CAS  PubMed  Google Scholar 

  50. Christianson JC, Shaler TA, Tyler RE, Kopito RR (2009) OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 10:272–282

    Article  CAS  Google Scholar 

  51. Zhong Y, Shen H, Wang Y et al (2015) Identification of ERAD components essential for dislocation of the null Hong Kong variant of α-1-antitrypsin (NHK). Biochem Biophys Res Commun 458:424–428

    Article  CAS  PubMed  Google Scholar 

  52. Di X-J, Wang Y-J, Han D-Y et al (2016) Grp94 protein delivers γ-aminobutyric acid type A (GABAA) receptors to Hrd1 protein-mediated endoplasmic reticulum-associated degradation. J Biol Chem 291:9526–9539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dersh D, Jones SM, Eletto D et al (2014) OS-9 facilitates turnover of nonnative GRP94 marked by hyperglycosylation. Mol Biol Cell 25:2220–2234

    Article  PubMed  PubMed Central  Google Scholar 

  54. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8

    Article  CAS  PubMed  Google Scholar 

  55. Haraguchi M, Yamashiro S, Furukawa K et al (1995) The effects of the site-directed removal of N-glycosylation sites from β-1,4-N-acetylgalactosaminyltransferase on its function. Biochem J 312:273–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cai G, Salonikidis PS, Fei J et al (2005) The role of N-glycosylation in the stability, trafficking and GABA-uptake of GABA-transporter 1. FEBS J 272:1625–1638

    Article  CAS  PubMed  Google Scholar 

  57. Skropeta D (2009) The effect of individual N-glycans on enzyme activity. Bioorg Med Chem 17:2545–2653

    Article  CAS  Google Scholar 

  58. Culyba EK, Price JL, Hanson SR et al (2011) Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns. Science 331:571–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hebert DN, Lamriben L, Powers ET, Kelly JW (2014) The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis. Nat Chem Biol 10:902–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hebert DN, Garman SC, Molinari M (2005) The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol 15:364–370

    Article  CAS  PubMed  Google Scholar 

  61. Caramelo JJ, Parodi AJ (2015) A sweet code for glycoprotein folding. FEBS Lett 589:3379–3387. https://doi.org/10.1016/j.febslet.2015.07.021

    Article  CAS  PubMed  Google Scholar 

  62. Lamriben L, Graham JB, Adams BM, Hebert DN (2016) N-glycan based ER molecular chaperone and protein quality control system: the calnexin binding cycle. Traffic 17:308–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Breitling J, Aebi M (2013) N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5:a013359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shrimal S, Cherepanova NA, Gilmore R (2015) Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol 41:71–78

    Article  CAS  PubMed  Google Scholar 

  65. Schallus T, Jaeckh C, Fehér K et al (2008) Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol Biol Cell 19:3404–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Qin S-Y, Hu D, Matsumoto K et al (2012) Malectin forms a complex with ribophorin i for enhanced association with misfolded glycoproteins. J Biol Chem 287:38080–38089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Takeda K, Qin S-Y, Matsumoto N, Yamamoto K (2014) Association of malectin with ribophorin I is crucial for attenuation of misfolded glycoprotein secretion. Biochem Biophys Res Commun 454:436–440

    Article  CAS  PubMed  Google Scholar 

  68. Galli C, Bernasconi R, Soldà T et al (2011) Malectin participates in a backup glycoprotein quality control pathway in the mammalian ER. PLoS ONE 6:e16304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hammond C, Ineke B, Ari H (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci USA 91:913–917

    Article  CAS  PubMed  Google Scholar 

  70. Schrag JD, Bergeron JJ, Li Y et al (2001) The structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell 8:633–644

    Article  CAS  PubMed  Google Scholar 

  71. Gopalakrishnapai J, Gupta G, Karthikeyan T et al (2006) Isothermal titration calorimetric study defines the substrate binding residues of calreticulin. Biochem Biophys Res Commun 351:14–20

    Article  CAS  PubMed  Google Scholar 

  72. Sousa M, Parodi AJ (1995) The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J 14:4196–4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hebert DN, Zhang J-X, Chen W et al (1997) The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J Cell Biochem 139:613–623

    CAS  Google Scholar 

  74. Vassilakos A, Michalak M, Lehrman MA, Williams DB (1998) Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 37:3480–3490

    Article  CAS  PubMed  Google Scholar 

  75. Li Z, Stafford WF, Bouvier M (2001) The metal ion binding properties of calreticulin modulate its conformational flexibility and thermal stability. Biochemistry 40:11193–11201

    Article  CAS  PubMed  Google Scholar 

  76. Kozlov G, Pocanschi CL, Rosenauer A et al (2010) Structural basis of carbohydrate recognition by calreticulin. J Biol Chem 285:38612–38620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ellgaard L, Bettendorff P, Braun D et al (2002) NMR structures of 36 and 73-residue fragments of the calreticulin P-domain. JMB 322:773–784

    Article  CAS  Google Scholar 

  78. Oliver JD, van der Wal FJ, Bulleid NJ, High S (1997) Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 275:86–88

    Article  CAS  PubMed  Google Scholar 

  79. Kozlov G, Bastos-Aristizabal S, Määttänen P et al (2010) Structural basis of cyclophilin B binding by the calnexin/calreticulin P-domain. J Biol Chem 285:35551–35557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kozlov G, Muñoz-Escobar J, Castro K, Gehring K (2017) Mapping the ER interactome: the P domains of calnexin and calreticulin as plurivalent adapters for foldases and chaperones. Structure 25:1415–1422

    Article  CAS  PubMed  Google Scholar 

  81. Roversi P, Marti L, Caputo AT et al (2017) Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint. Proc Natl Acad Sci USA 114:8544–8549

    Article  CAS  PubMed  Google Scholar 

  82. Satoh T, Song C, Zhu T et al (2017) Visualization of a flexible modular structure of the ER folding-sensor enzyme UGGT. Sci Rep 7:12142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Takeda Y, Seko A, Hachisu M et al (2014) Both isoforms of human UDP-glucose:glycoprotein glucosyltransferase are enzymatically active. Glycobiology 24:344–350

    Article  CAS  PubMed  Google Scholar 

  84. Ferguson AD, Labunskyy VM, Fomenko DE et al (2006) NMR structures of the selenoproteins Sep15 and SelM reveal redox activity of a new thioredoxin-like family. J Biol Chem 281:3536–3543

    Article  CAS  PubMed  Google Scholar 

  85. Korotkov KV, Kuramaswamy E, Zhou Y et al (2001) Association between the 15-kDa selenoprotein and UDP-glucose: glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J Biol Chem 276:15330–15336

    Article  CAS  PubMed  Google Scholar 

  86. Yim SH, Everley RA, Schildberg FA et al (2018) Role of selenof as a gatekeeper of secreted disulfide-rich glycoproteins. Cell Rep 23:1387–1398

    Article  CAS  PubMed  Google Scholar 

  87. Rajagopalan S, Brenner MB (1994) Calnexin retains unassembled major histocompatibility complex class I free heavy chains in the endoplasmic reticulum. J Exp Med 180:407–412

    Article  CAS  PubMed  Google Scholar 

  88. Cannon KS, Hebert DN, Helenius A (1996) Glycan dependent and independent association of vesicular stomatitis virus g protein with calnexin. J Biol Chem 271:14280–14284

    Article  CAS  PubMed  Google Scholar 

  89. Vassilakos A, Myrna C-DF, Peterson PA et al (1996) The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J 15:1495–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hebert DN, Foellmer B, Helenius A (1996) Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J 15:2961–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mesaeli N, Nakamura K, Zvaritch E et al (1999) Calreticulin is essential for cardiac development. J Cell Biol 144:857–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Molinari M, Galli C, Vanoni O et al (2005) Persistent glycoprotein misfolding activates the glucosidase II/UGT1-driven calnexin cycle to delay aggregation and loss of folding competence. Mol Cell 20:503–512

    Article  CAS  PubMed  Google Scholar 

  93. Coe H, Jung J, Groenendyk J et al (2010) ERp57 modulates STAT3 signaling from the lumen of the endoplasmic reticulum. J Biol Chem 285:6725–6738

    Article  CAS  PubMed  Google Scholar 

  94. Denzel A, Molinari M, Trigueros C et al (2002) Early postnatal death and motor disorders in mice congenitally deficient in calnexin expression. Mol Cell Biol 22:7398–7404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang N, Glidden EJ, Murphy SR et al (2008) The cotranslational maturation program for the type II membrane glycoprotein influenza neuraminidase. J Biol Chem 283:33826–33837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chandrasekhar K, Ke H, Wang N et al (2016) Cellular folding pathway of a metastable serpin. Proc Natl Acad Sci USA 113:6484–6489

    Article  CAS  PubMed  Google Scholar 

  97. Wang H, Li S, Wang J et al (2018) N-glycosylation in the protease domain of trypsin-like serine proteases mediates calnexin-assisted protein folding. eLife 7:e35672

    Article  PubMed  PubMed Central  Google Scholar 

  98. Daniels R, Kurowski B, Johnson AE, Hebert DN (2003) N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell 11:79–90

    Article  CAS  PubMed  Google Scholar 

  99. Gao B, Adhikari R, Howarth M et al (2002) Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity 16:99–109

    Article  CAS  PubMed  Google Scholar 

  100. Pearse BR, Gabriel L, Wang N, Hebert DN (2008) A cell-based reglucosylation assay demonstrates the role of GT1 in the quality control of a maturing glycoprotein. J Cell Biol 181:309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pearse BR, Tamura T, Sunryd JC et al (2010) The role of UDP-Glc:glycoprotein glucosyltransferase 1 in the maturation of an obligate substrate prosaposin. J Cell Biol 189:829–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tannous A, Patel N, Tamura T, Hebert DN (2015) Reglucosylation by UDP-glucose:glycoprotein glucosyltransferase 1 delays glycoprotein secretion but not degradation. Mol Biol Cell 26:390–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Soldà T, Galli C, Kaufman RJ, Molinari M (2007) Substrate-specific requirements for UGT1-dependent release from calnexin. Mol Cell 27:238–249

    Article  CAS  PubMed  Google Scholar 

  104. Olivari S, Molinari M (2007) Glycoprotein folding and the role of EDEM1, EDEM2 and EDEM3 in degradation of folding-defective glycoproteins. FEBS Lett 581:3658–3664

    Article  CAS  PubMed  Google Scholar 

  105. Sunryd JC, Tannous A, Lamriben L, Hebert DN (2014) Chaperones of the Endoplasmic Reticulum Associated Degradation (ERAD) Pathway. In: Houry WA (ed) The molecular chaperones interaction networks in protein folding and degradation. Springer Science, New York

    Google Scholar 

  106. Karaivanova VK, Luan P, Spiro RG (1998) Processing of viral envelope glycoprotein by the endomannosidase pathway: evaluation of host cell specificity. Glycobiology 8:725–730

    Article  CAS  PubMed  Google Scholar 

  107. Molinari M, Calanca V, Galli C et al (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299:1397–1400

    Article  CAS  PubMed  Google Scholar 

  108. Oda Y, Hosokawa N, Wada I, Nagata K (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299:1394–1397

    Article  CAS  PubMed  Google Scholar 

  109. Su K, Stoller T, Rocco J et al (1993) Pre-Golgi degradation of yeast prepro-alpha-factor expressed in a mammalian cell. Influence of cell type-specific oligosaccharide processing on intracellular fate. J Biol Chem 268:14301–14309

    CAS  PubMed  Google Scholar 

  110. Jakob CA, Burda P, Roth J, Aebi M (1998) Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol 142:1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Aikawa J, Matsuo I, Ito Y (2012) In vitro mannose trimming property of human ER α-1,2 mannosidase I. Glycoconj J 29:35–45. https://doi.org/10.1007/s10719-011-9362-1

    Article  CAS  PubMed  Google Scholar 

  112. Shenkman M, Ron E, Yehuda R et al (2018) Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates. Commun Biol 1:172. https://doi.org/10.1038/s42003-018-0174-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Słomińska-Wojewódzka M, Sandvig K (2015) The role of lectin-carbohydrate interactions in the regulation of ER-associated protein degradation. Molecules 20:9816–9846. https://doi.org/10.3390/molecules20069816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Quan EM, Kamiya Y, Kamiya D et al (2010) Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol Cell 32:870–877

    Article  CAS  Google Scholar 

  115. Bhamidipati A, Denic V, Quan EM, Weissman JS (2005) Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol Cell 19:741–751

    Article  CAS  PubMed  Google Scholar 

  116. Kim W, Spear ED, Ng DT (2005) Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol Cell 19:753–764

    Article  CAS  PubMed  Google Scholar 

  117. Szathmary R, Bielmann R, Nita-Lazar M et al (2005) Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol Cell 19:765–775

    Article  CAS  PubMed  Google Scholar 

  118. Denic V, Quan EM, Weissman JS (2006) A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126:349–359

    Article  CAS  PubMed  Google Scholar 

  119. Olivari S, Galli C, Alanen H et al (2005) A novel stress-induced EDEM variant regulating endoplasmic reticulum associated glycoprotein degradation. J Biol Chem 280:2424–2428

    Article  CAS  PubMed  Google Scholar 

  120. Hosokawa N, Tremblay LO, Sleno B et al (2010) EDEM1 accelerates the trimming of α1,2-linked mannose on the C branch of N-glycans. Glycobiology 20:567–575

    Article  CAS  PubMed  Google Scholar 

  121. Ninagawa S, Okada T, Sumitomo Y et al (2014) EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. J Cell Biol 206:347–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lamriben L, Oster ME, Tamura T et al (2018) EDEM1’s mannosidase-like domain binds ERAD client proteins in a redox-sensitive manner and possesses catalytic activity. J Biol Chem 293:13932–13945

    Article  CAS  PubMed  Google Scholar 

  123. Hosokawa N, Wada I, Nagasawa K et al (2008) Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. J Biol Chem 283:20914–20924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. van der Goot AT, Pearce MM, Leto DE et al (2018) Redundant and antagonistic roles of XTP3B and OS9 in decoding glycan and non-glycan degrons in ER-associated degradation. Mol Cell 70:516–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Calì T, Galli C, Olivari S, Molinari M (2008) Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities. Biochem Biophys Res Commun 371:405–410

    Article  CAS  PubMed  Google Scholar 

  126. Benyair R, Ogen-Shtern N, Mazkereth N et al (2015) Mammalian ER mannosidase I resides in quality control vesicles where it encounters its glycoprotein substrates. Mol Biol Cell 26:172–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gauss R, Kanehara K, Carvalho P et al (2011) A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol Cell 42:782–793

    Article  CAS  PubMed  Google Scholar 

  128. Liu C-Y, Fujimori DG, Weissman JS (2016) Htm1p–Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation. Proc Natl Acad Sci USA 113:E4015–E4024

    Article  CAS  PubMed  Google Scholar 

  129. Cormier JH, Tamura T, Sunryd JC, Hebert DN (2010) EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. Mol Cell 34:627–633

    Article  CAS  Google Scholar 

  130. Ushioda R, Hoseki J, Nagata K (2013) Glycosylation-independent ERAD pathway serves as a backup system under ER stress. Mol Biol Cell 24:3155–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tang H-Y, Huang C-H, Zhuang Y-H et al (2014) EDEM2 and OS-9 are required for ER-associated degradation of non-glycosylated sonic hedgehog. PLoS ONE 9:e92164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Saeed M, Suzuki R, Watanabe N et al (2011) Role of the endoplasmic reticulum-associated degradation (ERAD) pathway in degradation of hepatitis C virus envelope proteins and production of virus particles. J Biol Chem 286:37264–37273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hatahet F, Ruddock LW (2007) Substrate recognition by the protein disulfide isomerases. FEBS J 274:5223–5234

    Article  CAS  PubMed  Google Scholar 

  134. Appenzeller-Herzog C, Riemer J, Christensen B et al (2008) A novel disulphide switch mechanism in Ero1α balances ER oxidation in human cells. EMBO J 27:2977–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Määttänen P, Gehring K, Bergeron JJ, Thomas DY (2010) Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol 21:500–511

    Article  CAS  PubMed  Google Scholar 

  136. Sato Y, Kojima R, Okumura M et al (2013) Synergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding. Sci Rep 3:2456

    Article  PubMed  PubMed Central  Google Scholar 

  137. Sevier CS, Kaiser CA (2008) Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta 1783:549–556

    Article  CAS  PubMed  Google Scholar 

  138. Oka OB, Bulleid NJ (2013) Forming disulfides in the endoplasmic reticulum. Biochim Biophys Acta 1833:2425–2429

    Article  CAS  PubMed  Google Scholar 

  139. McLaughlin SH, Bulleid NJ (1998) Thiol-independent interaction of protein disulphide isomerase with type X collagen during intra-cellular folding and assembly. Biochem J 331:793–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pirneskoski A, Klappa P, Lobell M et al (2004) Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase. J Biol Chem 279:10374–10381

    Article  CAS  PubMed  Google Scholar 

  141. Denisov AY, Määttänen P, Dabrowski C et al (2009) Solution structure of the bb′ domains of human protein disulfide isomerase. FEBS J 276:1440–1449

    Article  CAS  PubMed  Google Scholar 

  142. Okumura M, Kadokura H, Inaba K (2015) Structures and functions of protein disulfide isomerase family members involved in proteostasis in the endoplasmic reticulum. Free Radic Bio Med 83:314–322

    Article  CAS  Google Scholar 

  143. Forster ML, Sivick K, Park Y et al (2006) Protein disulfide isomerase–like proteins play opposing roles during retrotranslocation. J Cell Biol 173:853–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Frickel E-M, Frei P, Bouvier M et al (2004) ERp57 is a multifunctional thiol-disulfide oxidoreductase. J Biol Chem 279:18277–18287

    Article  CAS  PubMed  Google Scholar 

  145. Zapun A, Darby NJ, Tessier DC et al (1998) Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J Biol Chem 273:6009–6012

    Article  CAS  PubMed  Google Scholar 

  146. Walczak CP, Tsai B (2011) A PDI family network acts distinctly and coordinately with ERp29 to facilitate polyomavirus infection. J Virol 85:2386–2396

    Article  CAS  PubMed  Google Scholar 

  147. Mazzarella RA, Srinivasan M, Haugejordan SM, Green M (1990) ERp72, an abundant luminal endoplasmic reticulum protein, contains three copies of the active site sequences of protein disulfide isomerase. J Biol Chem 265:1094–1101

    CAS  PubMed  Google Scholar 

  148. Kozlov G, Määttänen P, Schrag JD et al (2009) Structure of the noncatalytic domains and global fold of the protein disulfide isomerase ERp72. Structure 17:651–659

    Article  CAS  PubMed  Google Scholar 

  149. Jansen G, Määttänen P, Denisov AY et al (2012) An interaction map of endoplasmic reticulum chaperones and foldases. Mol Cell Proteom 11:710–723

    Article  CAS  Google Scholar 

  150. Menon S, Lee J, Abplanalp WA et al (2007) Oxidoreductase Interactions include a role for ERp72 engagement with mutant thyroglobulin from the rdw/rdw Rat Dwarf. J Biol Chem 282:6183–6191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Maegawa K, Watanabe S, Noi K et al (2017) The highly dynamic nature of ERdj5 is key to efficient elimination of aberrant protein oligomers through ER-associated degradation. Structure 25:846–857

    Article  CAS  PubMed  Google Scholar 

  152. Anelli T, Ceppi S, Bergamelli L et al (2007) Sequential steps and checkpoints in the early exocytic compartment during secretory IgM biogenesis. EMBO J 26:4177–4188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tiziana A, Alessio M, Bachi A et al (2003) Thiol-mediated protein retention in the endoplasmic reticulum: the role of ERp44. EMBO J 22:5015–5022

    Article  Google Scholar 

  154. Qiang L, Wang H, Farmer SR (2007) Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-Lα. Mol Cell Biol 27:4698–4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fraldi A, Zito E, Annunziata F et al (2008) Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44. Hum Mol Genet 17:2610–2621

    Article  CAS  PubMed  Google Scholar 

  156. Mariappan M, Radhakrishnan K, Dierks T et al (2008) ERp44 mediates a thiol-independent retention of formylglycine-generating enzyme in the endoplasmic reticulum. J Biol Chem 283:6375–6383

    Article  CAS  PubMed  Google Scholar 

  157. Anelli T, Sannino S, Sitia R (2015) Proteostasis and “redoxtasis” in the secretory pathway: tales of tails from ERp44 and immunoglobulins. Free Radic Bio Med 83:323–330

    Article  CAS  Google Scholar 

  158. Watanabe S, Harayama M, Kanemura S et al (2017) Structural basis of pH-dependent client binding by ERp44, a key regulator of protein secretion at the ER-Golgi interface. Proc Natl Acad Sci USA 114:E3224–E3232

    Article  CAS  PubMed  Google Scholar 

  159. Wang L, Wang L, Vavassori S et al (2008) Crystal structure of human ERp44 shows a dynamic functional modulation by its carboxy-terminal tail. EMBO Rep 9:642–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Vavassori S, Cortini M, Masui S et al (2013) A pH-regulated quality control cycle for surveillance of secretory protein assembly. Mol Cell 50:783–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health under Award No. GM086874 (to D.N.H.); and a Chemistry-Biology Interface Predoctoral training grant (T32 GM008515 to B. M. A.). We would also like to thank Jill Graham for thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel N. Hebert.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, B.M., Oster, M.E. & Hebert, D.N. Protein Quality Control in the Endoplasmic Reticulum. Protein J 38, 317–329 (2019). https://doi.org/10.1007/s10930-019-09831-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09831-w

Keywords

Navigation