Skip to main content

Artificial Intelligence in ADME Property Prediction

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2714))

  • 1403 Accesses

Abstract

Absorption, distribution, metabolism, excretion (ADME) are key properties of a small molecule that govern pharmacokinetic profiles and impact its efficacy and safety. Computational methods such as machine learning and artificial intelligence have gained significant interest in both academic and industrial settings to predict pharmacokinetic properties of small molecules. These methods are applied in drug discovery to optimize chemical libraries, prioritize hits from biological screens, and optimize ADME properties of lead molecules. In the recent years, the drug discovery community witnessed the use of a range of neural network architectures such as deep neural networks, recurrent neural networks, graph neural networks, and transformer neural networks, which marked a paradigm shift in computer-aided drug design and development. This chapter discusses recent developments with an emphasis on their application to predict ADME properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33

    Article  PubMed  Google Scholar 

  2. Wouters OJ, McKee M, Luyten J (2020) Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 323(9):844–853

    Article  PubMed  PubMed Central  Google Scholar 

  3. Parvathaneni V, Kulkarni NS, Muth A, Gupta V (2019) Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today 24(10):2076–2085

    Article  CAS  PubMed  Google Scholar 

  4. Coussens NP, Sittampalam GS, Guha R, Brimacombe K, Grossman A, Chung TDY et al (2018) Assay guidance manual: quantitative biology and pharmacology in preclinical drug discovery. Clin Transl Sci 11(5):461–470

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162(6):1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dowden H, Munro J (2019) Trends in clinical success rates and therapeutic focus. Nat Rev Drug Discov 18(7):495–496

    Article  CAS  PubMed  Google Scholar 

  7. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715

    Article  CAS  PubMed  Google Scholar 

  8. DiMasi JA (1995) Trends in drug development costs, times, and risks. Drug Inf J 29(2):375–378

    Article  Google Scholar 

  9. Muratov EN, Bajorath J, Sheridan RP et al (2020) QSAR without borders. Chem Soc Rev 49(11):3525–3564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zakharov AV, Zhao T, Nguyen DT et al (2019) Novel consensus architecture to improve performance of large-scale multitask deep learning QSAR models. J Chem Inf Model 59(11):4613–4624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benigni R, Netzeva TI, Benfenati E et al (2007) The expanding role of predictive toxicology: an update on the (Q)SAR models for mutagens and carcinogens. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 25(1):53–97

    Article  CAS  PubMed  Google Scholar 

  12. Muster W, Breidenbach A, Fischer H, Kirchner S, Müller L, Pähler A (2008) Computational toxicology in drug development. Drug Discov Today 13(7–8):303–310

    Article  CAS  PubMed  Google Scholar 

  13. Kruhlak NL, Contrera JF, Benz RD, Matthews EJ (2007) Progress in QSAR toxicity screening of pharmaceutical impurities and other FDA regulated products. Adv Drug Deliv Rev 59(1):43–55

    Article  CAS  PubMed  Google Scholar 

  14. Markossian S, Coussens NP, Dahlin JL, Sittampalam GS (2021) Assay guidance manual for drug discovery: robust or go bust. SLAS Discov 26(10):1241–1242

    Article  PubMed  PubMed Central  Google Scholar 

  15. (2000) Frontmatter. In: Handbook of molecular descriptors. Methods and principles in medicinal chemistry. pp i–xxi

    Google Scholar 

  16. (2009) Front Matter. In: Molecular descriptors for chemoinformatics. Methods and principles in medicinal chemistry. pp I–XLI

    Google Scholar 

  17. Bajorath J (2002) Integration of virtual and high-throughput screening. Nat Rev Drug Discov 1(11):882–894

    Article  CAS  PubMed  Google Scholar 

  18. Heikamp K, Bajorat J (2012) Fingerprint design and engineering strategies: rationalizing and improving similarity search performance. Future Med Chem 4(15):1945–1959

    Article  CAS  PubMed  Google Scholar 

  19. Stumpfe D, Bajorath J (2011) Similarity searching. WIREs Comput Mol Sci 1(2):260–282

    Article  CAS  Google Scholar 

  20. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754

    Article  CAS  PubMed  Google Scholar 

  21. Karthikeyan M, Bender A (2005) Encoding and decoding graphical chemical structures as two-dimensional (PDF417) barcodes. J Chem Inf Model 45(3):572–580

    Article  CAS  PubMed  Google Scholar 

  22. Arús-Pous J, Johansson SV, Prykhodko O, Bjerrum EJ, Tyrchan C, Reymond J-L et al (2019) Randomized SMILES strings improve the quality of molecular generative models. J Cheminform 11(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  23. Karpov P, Godin G, Tetko IV (2020) Transformer-CNN: Swiss knife for QSAR modeling and interpretation. J Cheminform 12(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H et al (2019) Analyzing learned molecular representations for property prediction. J Chem Inf Model 59(8):3370–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin YC (2009) Let’s not forget tautomers. J Comput Aided Mol Des 23(10):693–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fourches D, Muratov E, Tropsha A (2010) Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50(7):1189–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fourches D, Muratov E, Tropsha A (2016) Trust, but verify II: a practical guide to chemogenomics data curation. J Chem Inf Model 56(7):1243–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baurin N, Baker R, Richardson C, Chen I, Foloppe N, Potter A et al (2004) Drug-like annotation and duplicate analysis of a 23-supplier chemical database totalling 2.7 million compounds. J Chem Inf Comput Sci 44(2):643–651

    Article  CAS  PubMed  Google Scholar 

  29. Kuz’min VE, Artemenko AG, Muratov EN (2008) Hierarchical QSAR technology based on the simplex representation of molecular structure. J Comput Aided Mol Des 22(6–7):403–421

    Article  PubMed  Google Scholar 

  30. Varnek A, Fourches D, Horvath D, Klimchuk O, Gaudin C, Vayer P et al (2008) ISIDA – platform for virtual screening based on fragment and pharmacophoric descriptors. Curr Comput Aided Drug Des 4(3):191–198

    Article  CAS  Google Scholar 

  31. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22(1):69–77

    Article  CAS  Google Scholar 

  32. Mitchell JB (2014) Machine learning methods in chemoinformatics. Wiley Interdiscip Rev Comput Mol Sci 4(5):468–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson JM, Khoshgoftaar TM (2019) Survey on deep learning with class imbalance. J Big Data 6(1):27

    Article  Google Scholar 

  34. Shah P, Siramshetty VB, Zakharov AV, Southall NT, Xu X, Nguyen D-T (2020) Predicting liver cytosol stability of small molecules. J Cheminform 12(1):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hochreiter S, Klambauer G, Rarey M (2018) Machine learning in drug discovery. J Chem Inf Model 58(9):1723–1724

    Article  PubMed  Google Scholar 

  36. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  Google Scholar 

  37. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58(2):109–130

    Article  CAS  Google Scholar 

  38. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Article  Google Scholar 

  39. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  40. Dudley RM (1967) The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J Funct Anal 1(3):290–330

    Article  Google Scholar 

  41. Svetnik V, Wang T, Tong C, Liaw A, Sheridan RP, Song Q (2005) Boosting: an ensemble learning tool for compound classification and QSAR modeling. J Chem Inf Model 45(3):786–799

    Article  CAS  PubMed  Google Scholar 

  42. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43(6):1947–1958

    Article  CAS  PubMed  Google Scholar 

  43. Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 20(3):318–331

    Article  PubMed  Google Scholar 

  44. Klekota J, Roth FP (2008) Chemical substructures that enrich for biological activity. Bioinformatics 24(21):2518–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schneider N, Jäckels C, Andres C, Hutter MC (2008) Gradual in silico filtering for druglike substances. J Chem Inf Model 48(3):613–628

    Article  CAS  PubMed  Google Scholar 

  46. Hou T, Wang J, Li Y (2007) ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. J Chem Inf Model 47(6):2408–2415

    Article  CAS  PubMed  Google Scholar 

  47. Deconinck E, Zhang MH, Coomans D, Vander Heyden Y (2006) Classification tree models for the prediction of blood-brain barrier passage of drugs. J Chem Inf Model 46(3):1410–1419

    Article  CAS  PubMed  Google Scholar 

  48. Gleeson MP, Waters NJ, Paine SW, Davis AM (2006) In silico human and rat Vss quantitative structure-activity relationship models. J Med Chem 49(6):1953–1963

    Article  CAS  PubMed  Google Scholar 

  49. Lamanna C, Bellini M, Padova A, Westerberg G, Maccari L (2008) Straightforward recursive partitioning model for discarding insoluble compounds in the drug discovery process. J Med Chem 51(10):2891–2897

    Article  CAS  PubMed  Google Scholar 

  50. de Cerqueira LP, Golbraikh A, Oloff S, Xiao Y, Tropsha A (2006) Combinatorial QSAR modeling of P-glycoprotein substrates. J Chem Inf Model 46(3):1245–1254

    Article  Google Scholar 

  51. Mente SR, Lombardo F (2005) A recursive-partitioning model for blood-brain barrier permeation. J Comput Aided Mol Des 19(7):465–481

    Article  CAS  PubMed  Google Scholar 

  52. Chen B, Sheridan RP, Hornak V, Voigt JH (2012) Comparison of random forest and Pipeline Pilot Naïve Bayes in prospective QSAR predictions. J Chem Inf Model 52(3):792–803

    Article  CAS  PubMed  Google Scholar 

  53. Sheridan RP (2013) Time-split cross-validation as a method for estimating the goodness of prospective prediction. J Chem Inf Model 53(4):783–790

    Article  CAS  PubMed  Google Scholar 

  54. Siramshetty VB, Shah P, Kerns E, Nguyen K, Yu KR, Kabir M et al (2020) Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models. Sci Rep 10(1):20713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sushko I, Novotarskyi S, Körner R, Pandey AK, Cherkasov A, Li J et al (2010) Applicability domains for classification problems: benchmarking of distance to models for ames mutagenicity set. J Chem Inf Model 50(12):2094–2111

    Article  CAS  PubMed  Google Scholar 

  56. Klingspohn W, Mathea M, ter Laak A, Heinrich N, Baumann K (2017) Efficiency of different measures for defining the applicability domain of classification models. J Cheminform 9(1):44

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1):3–25

    Article  CAS  Google Scholar 

  58. Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a method for quantitative structure–activity relationships. J Chem Inf Model 55(2):263–274

    Article  CAS  PubMed  Google Scholar 

  59. Göller AH, Kuhnke L, Montanari F, Bonin A, Schneckener S, ter Laak A et al (2020) Bayer’s in silico ADMET platform: a journey of machine learning over the past two decades. Drug Discov Today 25(9):1702–1709

    Article  PubMed  Google Scholar 

  60. Hamzic S, Lewis R, Desrayaud S, Soylu C, Fortunato M, Gerebtzoff G et al (2022) Predicting in vivo compound brain penetration using multi-task graph neural networks. J Chem Inf Model 62(13):3180–3190

    Article  CAS  PubMed  Google Scholar 

  61. Wenzel J, Matter H, Schmidt F (2019) Predictive multitask deep neural network models for ADME-Tox properties: learning from large data sets. J Chem Inf Model 59(3):1253–1268

    Article  CAS  PubMed  Google Scholar 

  62. PredMS. Available from: https://predms.netlify.app/

  63. FP-ADMET. Available from: https://gitlab.com/vishsoft/fpadmet

  64. ADMETlab. Available from: https://admetmesh.scbdd.com/

  65. SwissADME. Available from: http://www.swissadme.ch/

  66. admetSAR. Available from: http://lmmd.ecust.edu.cn/admetsar2/

  67. BBB Predictor. Available from: https://www.cbligand.org/BBB/index.php

  68. CyProduct. Available from: https://bitbucket.org/wishartlab/cyproduct/src/master/

  69. SMARTCyp: site of metabolism prediction for Cytochrome P450s. Available from: https://smartcyp.sund.ku.dk/mol_to_som

  70. PreADMET. Available from: https://preadmet.qsarhub.com/

  71. MetaPred: a webserver for the prediction of Cytochrome P450 Isoform responsible for metabolizing a drug molecule. Available from: https://webs.iiitd.edu.in/oscadd/metapred/

  72. Virtual Computational Chemistry Laboratory (VCCLab). Available from: http://vcclab.org/lab/alogps/

  73. Online Chemical Modeling Environment (OCHEM). Available from: https://ochem.eu

  74. pkCSM: predicting small-molecule pharmacokinetic properties using graph-based signatures. Available from: https://biosig.lab.uq.edu.au/pkcsm/

Download references

Acknowledgments

We thank Edward Kerns, Kimloan Nguyen, Kyeong Ri Yu, Jordan Williams, Md Kabir, Rintaro Kato, Eric Gonzalez, Nao Katori-Torimoto, Paul Shinn, Misha Itkin, Ewy Mathé, Dac-Trung Nguyen, Jorge Neyra, Noel Southall, Sankalp Jain, Alexey Zakharov, Tuan Xu, Ruili Huang, and Hongmao Sun for their valuable contributions to in silico and in vitro ADME research and the development of ADME@NCATS prediction platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranav Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Siramshetty, V.B., Xu, X., Shah, P. (2024). Artificial Intelligence in ADME Property Prediction. In: Gore, M., Jagtap, U.B. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 2714. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3441-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3441-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3440-0

  • Online ISBN: 978-1-0716-3441-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics