Skip to main content

Dynamic Models for Predictive Microbiology

  • Chapter
  • First Online:
Basic Protocols in Predictive Food Microbiology

Abstract

First-order ordinary differential equations have been used as mathematical models to describe and predict the dynamics of foodborne microorganisms. The most suitable models are based on an elementary block that quantifies the instantaneous rate of microbial growth (positive) or inactivation (negative) as directly proportional to the instantaneous microbial concentration. Adjustment functions multiply this elementary block to describe deviations from the log-linear behavior, leading to the adaptation (lag) and stationary phases for growth or the shoulder and tail phases for inactivation. Parameter estimation is performed from experimental data obtained under constant or variable extrinsic and intrinsic conditions. The latter can be performed by the traditional two-step (adjusting primary and then secondary equations) or one-step (fitting coupled primary-secondary equations) approaches. This chapter details useful procedures applied to quantitatively model the growth and inactivation dynamics of microorganisms in food, including some case studies of the microbial dynamics under constant and variable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bigelow WD, Esty JR (1920) The thermal death point in relation to time of typical thermophilic organisms. J Infect Dis 27:602

    Article  Google Scholar 

  2. Van Impe JF, Nicolai BM, Martens T, De Baerdemaeker J, Vandewalle J (1992) Dynamic mathematical model to predict microbial growth and inactivation during food processing. Appl Environ Microbiol 58:2901

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23:277

    Article  CAS  PubMed  Google Scholar 

  4. Bernaerts K, Dens E, Vereecken K, Geeraerd A, Devlieghere F, Debevere J et al (2003) Modeling microbial dynamics under time-varying conditions. In: Modeling microbial responses in food. Routledge

    Google Scholar 

  5. Whiting R, Buchanan R (1993) A classification of models in predictive microbiology – a reply to K. R Davey. Food Microbiol 10(2):175–177

    Google Scholar 

  6. Tsoularis A, Wallace J (2002) Analysis of logistic growth models. Math Biosci 179:21

    Article  CAS  PubMed  Google Scholar 

  7. Longhi DA, Dalcanton F, Aragão GMFD, Carciofi BAM, Laurindo JB (2013) Assessing the prediction ability of different mathematical models for the growth of lactobacillus plantarum under non-isothermal conditions. J Theor Biol 335:88

    Article  PubMed  Google Scholar 

  8. Ranjbaran M, Carciofi BAM, Datta AK (2021) Engineering modeling frameworks for microbial food safety at various scales. Comprehens Rev Food Sci Food Safety 20(5):4213–4249. Available from: https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.12818

    Article  Google Scholar 

  9. Geeraerd AH, Valdramidis VP, Van Impe JF (2005) GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int J Food Microbiol 102:95

    Article  CAS  PubMed  Google Scholar 

  10. Geeraerd AH, Herremans CH, van Impe JF (2000) Structural model requirements to describe microbial inactivation during a mild heat treatment. Intern J Food Microbiol 59(3):185–209. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168160500003627

    Article  CAS  Google Scholar 

  11. Baranyi J, Tamplin ML (2004) ComBase: a common database on microbial responses to food environments†. J Food Protect 67(9):1967–1971. Available from: https://meridian.allenpress.com/jfp/article/67/9/1967/170940/ComBase-A-Common-Database-on-Microbial-Responses

    Article  Google Scholar 

  12. Rohatgi A (2021) WebPlotDigitizer [Internet]. Pacifica, California, USA [cited 2022 May 8]. Available from: https://automeris.io/WebPlotDigitizer

  13. International Standard Organization (2007) Microbiology of food and animal feeding stuffs - general requirements and guidance for microbiological examinations. ISO 7218

    Google Scholar 

  14. International Standard Organization (2006) Microbiology of food, animal feed and water - Preparation, production, storage and performance testing of culture media. ISO 11133

    Google Scholar 

  15. International Standard Organization (2019) Microbiology of the food chain – Requirements and guidelines for conducting challange tests of food and feed products – Part 1: Challenge tests to study growth potential, lag time and maximum growth rate. ISO, pp 20976–20971

    Google Scholar 

  16. Ratkowsky DA, Olley J, McMeekin TA, Ball A (1982) Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosso L, Lobry JR, Flandrois JP (1993) An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J Theor Biol 162:447

    Article  CAS  PubMed  Google Scholar 

  18. Baranyi J, Roberts TA (1995) Mathematics of predictive food microbiology. Intern J Food Microbiol 26(2):199–218. Available from: https://linkinghub.elsevier.com/retrieve/pii/016816059400121L

    Article  CAS  Google Scholar 

  19. Silva NBD, Longhi DA, Martins WF, Laurindo JB, Aragão GMFD, Carciofi BAM (2017) Modeling the growth of lactobacillus viridescens under non-isothermal conditions in vacuum-packed sliced ham. Int J Food Microbiol 240:97

    Article  PubMed  Google Scholar 

  20. Longhi DA, Martins WF, da Silva NB, Carciofi BAM, de Aragão GMF, Laurindo JB (2017) Optimal experimental design for improving the estimation of growth parameters of lactobacillus viridescens from data under non-isothermal conditions. Int J Food Microbiol 240:57

    Article  PubMed  Google Scholar 

  21. Zimmermann M, Longhi DA, Schaffner DW, Aragão GMF (2014) Predicting Bacillus coagulans spores inactivation in tomato pulp under nonisothermal heat treatments. J Food Sci 79(5):M935

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Angelo Longhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longhi, D.A., Carciofi, B.A.M., de Aragão, G.M.F., Laurindo, J.B. (2023). Dynamic Models for Predictive Microbiology. In: Alvarenga, V.O. (eds) Basic Protocols in Predictive Food Microbiology. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3413-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3413-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3412-7

  • Online ISBN: 978-1-0716-3413-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics