Skip to main content

Intravitreal Injection of AAV for the Transduction of Mouse Retinal Ganglion Cells

  • Protocol
  • First Online:
Retinal Ganglion Cells

Abstract

The injection of therapies into the eye is common practice, both clinically and pre-clinically. The most straightforward delivery route is via an intravitreal injection, which introduces the treatment into the largest cavity at the posterior of the eye. This technique is frequently used to deliver gene therapies, including those containing recombinant adeno-associated viral vectors (AAVs), to the back of the eye to enable inner retinal targeting. This chapter provides detailed methodology on how to successfully perform an intravitreal injection in mice. The chapter covers vector preparation considerations, advice on how to minimize vector loss in the injection device, and ways to reduce vector reflux from the eye when administering a therapy. Finally, a protocol is provided on common retinal histology processing techniques to assess vector-mediated expression in retinal ganglion cells. It is hoped that this chapter will enable researchers to carry out effective and consistent intravitreal injections that transduce the inner retinal surface while avoiding common pitfalls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bao Z-Z (2008) Intraretinal projection of retinal ganglion cell axons as a model system for studying axon navigation. Brain Res 1192:165–177. https://doi.org/10.1016/j.brainres.2007.01.116

    Article  CAS  PubMed  Google Scholar 

  2. Khatib TZ, Martin KR (2017) Protecting retinal ganglion cells. Eye 31:218–224. https://doi.org/10.1038/eye.2016.299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li C, Samulski RJ (2020) Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 21:255–272. https://doi.org/10.1038/s41576-019-0205-4

    Article  CAS  PubMed  Google Scholar 

  4. Fuller-Carter PI, Basiri H, Harvey AR et al (2020) Focused update on AAV-based gene therapy clinical trials for inherited retinal degeneration. BioDrugs 34:763–781. https://doi.org/10.1007/s40259-020-00453-8

    Article  PubMed  Google Scholar 

  5. Kuzmin DA, Shutova MV, Johnston NR et al (2021) The clinical landscape for AAV gene therapies. Nat Rev Drug Discov 20:173–174. https://doi.org/10.1038/d41573-021-00017-7

    Article  CAS  PubMed  Google Scholar 

  6. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR et al (2021) Current clinical applications of in vivo gene therapy with AAVs. Mol Ther 29:464–488. https://doi.org/10.1016/j.ymthe.2020.12.007

    Article  CAS  PubMed  Google Scholar 

  7. Au HKE, Isalan M, Mielcarek M (2022) Gene therapy advances: a meta-analysis of AAV usage in clinical settings. Front Med 8:809118

    Article  Google Scholar 

  8. Pupo A, Fernández A, Low SH et al (2022) AAV vectors: the Rubik’s cube of human gene therapy. Mol Ther 30:3515–3541. https://doi.org/10.1016/j.ymthe.2022.09.015

    Article  CAS  PubMed  Google Scholar 

  9. Verdera HC, Kuranda K, Mingozzi F (2020) AAV vector immunogenicity in humans: a long journey to successful gene transfer. Mol Ther 28:723–746. https://doi.org/10.1016/j.ymthe.2019.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Whitehead M, Osborne A, Yu-Wai-Man P et al (2021) Humoral immune responses to AAV gene therapy in the ocular compartment. Biol Rev 96:1616–1644. https://doi.org/10.1111/brv.12718

    Article  CAS  PubMed  Google Scholar 

  11. Sabatino DE, Bushman FD, Chandler RJ et al (2022) Evaluating the state of the science for adeno-associated virus integration: an integrated perspective. Mol Ther 30:2646–2663. https://doi.org/10.1016/j.ymthe.2022.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haery L, Deverman BE, Matho KS et al (2019) Adeno-associated virus technologies and methods for targeted neuronal manipulation. Front Neuroanat 13:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang L-Y, Halder S, Agbandje-McKenna M (2014) Parvovirus glycan interactions. Curr Opin Virol 7:108–118. https://doi.org/10.1016/j.coviro.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  14. Pillay S, Zou W, Cheng F et al (2017) Adeno-associated virus (AAV) serotypes have distinctive interactions with domains of the cellular AAV receptor. J Virol 91:e00391–e00317. https://doi.org/10.1128/JVI.00391-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Auricchio A, Kobinger G, Anand V et al (2001) Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet 10:3075–3081. https://doi.org/10.1093/hmg/10.26.3075

    Article  CAS  PubMed  Google Scholar 

  16. Pang J, Lauramore A, Deng W et al (2008) Comparative analysis of in vivo and in vitro AAV vector transduction in the neonatal mouse retina: effects of serotype and site of administration. Vis Res 48:377–385. https://doi.org/10.1016/j.visres.2007.08.009

    Article  CAS  PubMed  Google Scholar 

  17. Lebherz C, Maguire A, Tang W et al (2008) Novel AAV serotypes for improved ocular gene transfer. J Gene Med 10:375–382. https://doi.org/10.1002/jgm.1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hellström M, Ruitenberg MJ, Pollett MA et al (2009) Cellular tropism and transduction properties of seven adeno-associated viral vector serotypes in adult retina after intravitreal injection. Gene Ther 16:521–532. https://doi.org/10.1038/gt.2008.178

    Article  CAS  PubMed  Google Scholar 

  19. Cao X, Yung J, Mak H et al (2019) Factors governing the transduction efficiency of adeno-associated virus in the retinal ganglion cells following intravitreal injection. Gene Ther 26:109–120. https://doi.org/10.1038/s41434-019-0060-0

    Article  CAS  PubMed  Google Scholar 

  20. Dong J-Y, Fan P-D, Frizzell RA (1996) Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 7:2101–2112. https://doi.org/10.1089/hum.1996.7.17-2101

    Article  CAS  PubMed  Google Scholar 

  21. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18:80–86. https://doi.org/10.1038/mt.2009.255

    Article  CAS  PubMed  Google Scholar 

  22. Nieuwenhuis B, Laperrousaz E, Tribble JR et al (2023) Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters. Gene Ther 1–17. https://doi.org/10.1038/s41434-022-00380-z

  23. Georgiadis A, Duran Y, Ribeiro J et al (2016) Development of an optimized AAV2/5 gene therapy vector for Leber congenital amaurosis owing to defects in RPE65. Gene Ther 23:857–862. https://doi.org/10.1038/gt.2016.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi J-H, Yu N-K, Baek G-C et al (2014) Optimization of AAV expression cassettes to improve packaging capacity and transgene expression in neurons. Mol Brain 7:17. https://doi.org/10.1186/1756-6606-7-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu J, Williams JA, Luke J et al (2017) A 5′ noncoding exon containing engineered intron enhances transgene expression from recombinant AAV vectors in vivo. Hum Gene Ther 28:125–134. https://doi.org/10.1089/hum.2016.140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loeb JE, Cordier WS, Harris ME et al (1999) Enhanced expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis virus posttranscriptional regulatory element: implications for gene therapy. Hum Gene Ther 10:2295–2305. https://doi.org/10.1089/10430349950016942

    Article  CAS  PubMed  Google Scholar 

  27. Patrício MI, Barnard AR, Orlans HO et al (2017) Inclusion of the woodchuck hepatitis virus posttranscriptional regulatory element enhances AAV2-driven transduction of mouse and human retina. Mol Ther Nucleic Acids 6:198–208. https://doi.org/10.1016/j.omtn.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  28. Chaffiol A, Caplette R, Jaillard C et al (2017) A new promoter allows optogenetic vision restoration with enhanced sensitivity in macaque retina. Mol Ther 25:2546–2560. https://doi.org/10.1016/j.ymthe.2017.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fujita K, Nishiguchi KM, Shiga Y et al (2017) Spatially and temporally regulated NRF2 gene therapy using Mcp-1 promoter in retinal ganglion cell injury. Mol Ther Methods Clin Dev 5:130–141. https://doi.org/10.1016/j.omtm.2017.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hanlon KS, Chadderton N, Palfi A et al (2017) A novel retinal ganglion cell promoter for utility in AAV vectors. Front Neurosci 11:521

    Article  PubMed  PubMed Central  Google Scholar 

  31. Smith CA, Chauhan BC (2018) In vivo imaging of adeno-associated viral vector labelled retinal ganglion cells. Sci Rep 8:1490. https://doi.org/10.1038/s41598-018-19969-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Simpson EM, Korecki AJ, Fornes O et al (2019) New MiniPromoter Ple345 (NEFL) drives strong and specific expression in retinal ganglion cells of mouse and primate retina. Hum Gene Ther 30:257–272. https://doi.org/10.1089/hum.2018.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Millington-Ward S, Chadderton N, Berkeley M et al (2020) Novel 199 base pair NEFH promoter drives expression in retinal ganglion cells. Sci Rep 10:16515. https://doi.org/10.1038/s41598-020-73257-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Q, Zhuang P, Huang H et al (2020) Mouse γ-synuclein promoter-mediated gene expression and editing in mammalian retinal ganglion cells. J Neurosci 40:3896–3914. https://doi.org/10.1523/JNEUROSCI.0102-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Strobel B, Miller FD, Rist W et al (2015) Comparative analysis of cesium chloride- and iodixanol-based purification of recombinant adeno-associated viral vectors for preclinical applications. Human Gene Ther Methods 26:147–157. https://doi.org/10.1089/hgtb.2015.051

    Article  CAS  Google Scholar 

  36. Belova L, Kochergin-Nikitsky K, Erofeeva A et al (2022) Approaches to purification and concentration of rAAV vectors for gene therapy. Bio Essays 44:2200019. https://doi.org/10.1002/bies.202200019

    Article  CAS  Google Scholar 

  37. Chandler LC, McClements ME, Yusuf IH et al (2021) Characterizing the cellular immune response to subretinal AAV gene therapy in the murine retina. Mol Ther Methods Clin Dev 22:52–65. https://doi.org/10.1016/j.omtm.2021.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kondratova L, Kondratov O, Ragheb R et al (2019) Removal of endotoxin from rAAV samples using a simple detergent-based protocol. Mol Ther Methods Clin Dev 15:112–119. https://doi.org/10.1016/j.omtm.2019.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. (2015) Endotoxin testing recommendations for single-use intraocular ophthalmic devices; guidance for industry and food and drug administration staff; availability. In: Federal Register. https://www.federalregister.gov/documents/2015/08/17/2015-20229/endotoxin-testing-recommendations-for-single-use-intraocular-ophthalmic-devices-guidance-for. Accessed 24 Feb 2023

  40. Chan YK, Dick AD, Hall SM et al (2021) Inflammation in viral vector-mediated ocular gene therapy: a review and report from a workshop hosted by the Foundation Fighting Blindness, 9/2020. Transl Vis Sci Technol 10:3. https://doi.org/10.1167/tvst.10.4.3

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bennicelli J, Wright JF, Komaromy A et al (2008) Reversal of blindness in animal models of Leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther 16:458–465. https://doi.org/10.1038/sj.mt.6300389

    Article  CAS  PubMed  Google Scholar 

  42. Fischer MD, Hickey DG, Singh MS et al (2016) Evaluation of an optimized injection system for retinal gene therapy in human patients. Human Gene Ther Methods 27:150–158. https://doi.org/10.1089/hgtb.2016.086

    Article  CAS  Google Scholar 

  43. Patrício MI, Cox CI, Blue C et al (2020) Inclusion of PF68 surfactant improves stability of rAAV Titer when passed through a surgical device used in retinal gene therapy. Mol Ther Methods Clin Dev 17:99–106. https://doi.org/10.1016/j.omtm.2019.11.005

    Article  CAS  PubMed  Google Scholar 

  44. Silverman J (2012) Chapter 29 – biomedical research techniques. In: Suckow MA, Stevens KA, Wilson RP (eds) The laboratory rabbit, guinea pig, hamster, and other rodents. Academic, Boston, pp 779–795

    Chapter  Google Scholar 

  45. Lin C-H, Sun YJ, Lee SH et al (2022) A protocol to inject ocular drug implants into mouse eyes. STAR Protoc 3:101143. https://doi.org/10.1016/j.xpro.2022.101143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Da Costa R, Röger C, Segelken J et al (2016) A novel method combining vitreous aspiration and intravitreal AAV2/8 injection results in retina-wide transduction in adult mice. Invest Ophthalmol Vis Sci 57:5326–5334. https://doi.org/10.1167/iovs.16-19701

    Article  CAS  PubMed  Google Scholar 

  47. Looser ZJ, Barrett MJP, Hirrlinger J et al (2018) Intravitreal AAV-delivery of genetically encoded sensors enabling simultaneous two-photon imaging and electrophysiology of optic nerve axons. Front Cell Neurosci 12:377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Osborne A, Khatib TZ, Songra L et al (2018) Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis 9:1–18. https://doi.org/10.1038/s41419-018-1041-8

    Article  CAS  Google Scholar 

  49. Katada Y, Kobayashi K, Tsubota K et al (2019) Evaluation of AAV-DJ vector for retinal gene therapy. PeerJ 7:e6317. https://doi.org/10.7717/peerj.6317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rodger J, Drummond ES, Hellström M et al (2012) Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells. PLoS One 7:e31061. https://doi.org/10.1371/journal.pone.0031061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. LeVaillant CJ, Sharma A, Muhling J et al (2016) Significant changes in endogenous retinal gene expression assessed 1 year after a single intraocular injection of AAV-CNTF or AAV-BDNF. Mol Ther Methods Clin Dev 3:16078. https://doi.org/10.1038/mtm.2016.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu J, Cai Y, Wu X et al (2021) Transcardiac perfusion of the mouse for brain tissue dissection and fixation. Bio Protocols 11:e3988. https://doi.org/10.21769/BioProtoc.3988

    Article  CAS  Google Scholar 

  53. Khatib TZ, Osborne A, Yang S et al (2021) Receptor-ligand supplementation via a self-cleaving 2A peptide-based gene therapy promotes CNS axonal transport with functional recovery. Sci Adv 7:eabd2590. https://doi.org/10.1126/sciadv.abd2590

    Article  PubMed  PubMed Central  Google Scholar 

  54. Luo X, Yungher B, Park KK (2014) Application of tissue clearing and light sheet fluorescence microscopy to assess optic nerve regeneration in unsectioned tissues. Methods Mol Biol 1162:209–217. https://doi.org/10.1007/978-1-4939-0777-9_17

    Article  CAS  PubMed  Google Scholar 

  55. Claybon A, Bishop AJR (2011) Dissection of a mouse eye for a whole mount of the retinal pigment epithelium. J Vis Exp:2563. https://doi.org/10.3791/2563

  56. Ivanova E, Toychiev AH, Yee CW et al (2013) Optimized protocol for retinal wholemount preparation for imaging and immunohistochemistry. J Vis Exp:e51018. https://doi.org/10.3791/51018

  57. Pang J, Thomas N, Tsuchiya D et al (2021) Step-by-step preparation of mouse eye sections for routine histology, immunofluorescence, and RNA in situ hybridization multiplexing. STAR Protocols 2:100879. https://doi.org/10.1016/j.xpro.2021.100879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cross T, Navarange R, Son J-H et al (2021) Simple RGC: ImageJ plugins for counting retinal ganglion cells and determining the transduction efficiency of viral vectors in retinal Wholemounts. JORS 9:15. https://doi.org/10.5334/jors.342

    Article  Google Scholar 

  59. How to take care of a syringe. https://www.hamiltoncompany.com/laboratory-products/syringe-knowledge-base/syringe-care-and-use-guide. Accessed 24 Feb 2023

  60. Powner MB, Vevis K, McKenzie JAG et al (2012) Visualization of gene expression in whole mouse retina by in situ hybridization. Nat Protoc 7:1086–1096. https://doi.org/10.1038/nprot.2012.050

    Article  CAS  PubMed  Google Scholar 

  61. Ullmann JFP, Moore BA, Temple SE et al (2012) The retinal Wholemount technique: a window to understanding the brain and behaviour. BBE 79:26–44. https://doi.org/10.1159/000332802

    Article  Google Scholar 

  62. Chidlow G, Osborne NN (2003) Rat retinal ganglion cell loss caused by kainate, NMDA and ischemia correlates with a reduction in mRNA and protein of Thy-1 and neurofilament light. Brain Res 963:298–306. https://doi.org/10.1016/S0006-8993(02)04052-0

    Article  CAS  PubMed  Google Scholar 

  63. Surgucheva I, Weisman AD, Goldberg JL et al (2008) Gamma-synuclein as a marker of retinal ganglion cells. Mol Vis 14:1540–1548

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kwong JMK, Caprioli J, Piri N (2010) RNA binding protein with multiple splicing: a new marker for retinal ganglion cells. Invest Ophthalmol Vis Sci 51:1052–1058. https://doi.org/10.1167/iovs.09-4098

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rodriguez AR, de Sevilla Müller LP, Brecha NC (2014) The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol 522:1411–1443. https://doi.org/10.1002/cne.23521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nadal-Nicolás FM, Galindo-Romero C, Lucas-Ruiz F et al (2023) Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques. Zool Res 44:226–248. https://doi.org/10.24272/j.issn.2095-8137.2022.308

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Bart Nieuwenhuis is supported by the Medical Research Council (MR/V002694/1) in the form of a postdoctoral research associate position. Andrew Osborne is supported by Ikarovec Limited. We thank Andrea Loreto, Fiona Love, and Yamunadevi Lakshmanan for proofreading and Laura Vaux, Emily Warner, and Kara Boyd for anesthetic support and imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Osborne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nieuwenhuis, B., Osborne, A. (2023). Intravitreal Injection of AAV for the Transduction of Mouse Retinal Ganglion Cells. In: Mead, B. (eds) Retinal Ganglion Cells. Methods in Molecular Biology, vol 2708. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3409-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3409-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3408-0

  • Online ISBN: 978-1-0716-3409-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics