Skip to main content
Log in

Focused Update on AAV-Based Gene Therapy Clinical Trials for Inherited Retinal Degeneration

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Inherited retinal diseases (IRDs) comprise a clinically and genetically heterogeneous group of disorders that can ultimately result in photoreceptor dysfunction/death and vision loss. With over 270 genes known to be involved in IRDs, translation of treatment strategies into clinical applications has been historically difficult. However, in recent years there have been significant advances in basic research findings as well as translational studies, culminating in an increasing number of clinical trials with the ultimate goal of reducing vision loss and associated morbidities. The recent approval of Luxturna® (voretigene neparvovec-rzyl) for Leber congenital amaurosis type 2 (LCA2) prompts a review of the current clinical trials for IRDs, with a particular focus on the importance of adeno-associated virus (AAV)-based gene therapies. The present article reviews the current state of AAV use in gene therapy clinical trials for IRDs, with a brief background on AAV and the reasons behind its dominance in ocular gene therapy. It will also discuss pre-clinical progress in AAV-based therapies aimed at treating other ocular conditions that can have hereditable links, and what alternative technologies are progressing in the same therapeutic space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diaz-Coranguez M, Ramos C, Antonetti DA. The inner blood-retinal barrier: cellular basis and development. Vis Res. 2017;139:123–37.

    PubMed  Google Scholar 

  2. Bennett J. Immune response following intraocular delivery of recombinant viral vectors. Gene Ther. 2003;10(11):977–82.

    CAS  PubMed  Google Scholar 

  3. Hellstrom M, Harvey AR. Retinal ganglion cell gene therapy and visual system repair. Curr Gene Ther. 2011;11(2):116–31.

    CAS  PubMed  Google Scholar 

  4. Ochakovski GA, Bartz-Schmidt KU, Fischer MD. Retinal gene therapy: surgical vector delivery in the translation to clinical trials. Front Neurosci. 2017;11:174.

    PubMed  PubMed Central  Google Scholar 

  5. Jolly JK, Bridge H, MacLaren RE. Outcome measures used in ocular gene therapy trials: a scoping review of current practice. Front Pharmacol. 2019;10:1076.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu M, Easter SS. Retinal neurogenesis: the formation of the initial central patch of postmitotic cells. Dev Biol. 1999;207(2):309–21.

    CAS  PubMed  Google Scholar 

  7. Surace EM, Auricchio A. Versatility of AAV vectors for retinal gene transfer. Vis Res. 2008;48(3):353–9.

    CAS  PubMed  Google Scholar 

  8. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Verdera HC, Kuranda K, Mingozzi F. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Mol Ther. 2020;28(3):723–46.

    CAS  PubMed  Google Scholar 

  10. Hellstrom M, et al. Cellular tropism and transduction properties of seven adeno-associated viral vector serotypes in adult retina after intravitreal injection. Gene Ther. 2009;16(4):521–32.

    CAS  PubMed  Google Scholar 

  11. Ling C, et al. Development of optimized AAV serotype vectors for high-efficiency transduction at further reduced doses. Hum Gene Ther Methods. 2016;27(4):143–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ali RR, et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet. 1996;5(5):591–4.

    CAS  PubMed  Google Scholar 

  13. Flotte TR, Berns KI. Adeno-associated virus: a ubiquitous commensal of mammals. Hum Gene Ther. 2005;16(4):401–7.

    CAS  PubMed  Google Scholar 

  14. Flotte TR, Afione SA, Zeitlin PL. Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am J Respir Cell Mol Biol. 1994;11(5):517–21.

    CAS  PubMed  Google Scholar 

  15. Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science. 1965;149(3685):754–6.

    CAS  PubMed  Google Scholar 

  16. Zinn E, Vandenberghe LH. Adeno-associated virus: fit to serve. Curr Opin Virol. 2014;8:90–7.

    PubMed  Google Scholar 

  17. Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet. 2020;21(4):255–72.

    CAS  PubMed  Google Scholar 

  18. Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron. 2019;101(5):839–62.

    CAS  PubMed  Google Scholar 

  19. Bedbrook CN, Deverman BE, Gradinaru V. Viral strategies for targeting the central and peripheral nervous systems. Annu Rev Neurosci. 2018;41:323–48.

    CAS  PubMed  Google Scholar 

  20. Bennett J, et al. Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc Natl Acad Sci USA. 1999;96(17):9920–5.

    CAS  PubMed  Google Scholar 

  21. Bennett J, et al. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nat Med. 1996;2(6):649–54.

    CAS  PubMed  Google Scholar 

  22. Jomary C, et al. Rescue of photoreceptor function by AAV-mediated gene transfer in a mouse model of inherited retinal degeneration. Gene Ther. 1997;4(7):683–90.

    CAS  PubMed  Google Scholar 

  23. Acland GM, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet. 2001;28(1):92–5.

    CAS  PubMed  Google Scholar 

  24. Narfstrom K, et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Investig Ophthalmol Vis Sci. 2003;44(4):1663–72.

    Google Scholar 

  25. Acland GM, et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther. 2005;12(6):1072–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Erles K, Sebokova P, Schlehofer JR. Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol. 1999;59(3):406–11.

    CAS  PubMed  Google Scholar 

  27. Zolotukhin S, et al. Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods. 2002;28(2):158–67.

    CAS  PubMed  Google Scholar 

  28. Rabinowitz JE, et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol. 2002;76(2):791–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao G, Vandenberghe LH, Wilson JM. New recombinant serotypes of AAV vectors. Curr Gene Ther. 2005;5(3):285–97.

    CAS  PubMed  Google Scholar 

  30. Carvalho LS, et al. Evaluating efficiencies of dual AAV approaches for retinal targeting. Front Neurosci. 2017;11:503.

    PubMed  PubMed Central  Google Scholar 

  31. Maddalena A, et al. Triple vectors expand AAV transfer capacity in the retina. Mol Ther. 2018;26(2):524–41.

    CAS  PubMed  Google Scholar 

  32. Lee JH, et al. Gene therapy for visual loss: opportunities and concerns. Prog Retin Eye Res. 2019;68:31–53.

    CAS  PubMed  Google Scholar 

  33. Khatib TZ, Martin KR. Neuroprotection in glaucoma: towards clinical trials and precision medicine. Curr Eye Res. 2020;45(3):327–38.

    PubMed  Google Scholar 

  34. Duncan JL, et al. Inherited retinal degenerations: current landscape and knowledge gaps. Transl Vis Sci Technol. 2018;7(4):6.

    PubMed  PubMed Central  Google Scholar 

  35. Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res. 2010;29(5):335–75.

    CAS  PubMed  Google Scholar 

  36. Talib M, et al. Clinical and genetic characteristics of male patients with RPGR-associated retinal dystrophies: a long-term follow-up study. Retina. 2019;39(6):1186–99.

    CAS  PubMed  Google Scholar 

  37. Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss. Vis Res. 2015;111(Pt B):124–33.

    PubMed  Google Scholar 

  38. Bennett J, et al. Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction. Investig Ophthalmol Vis Sci. 1997;38(13):2857–63.

    CAS  Google Scholar 

  39. Rolling F, et al. Evaluation of adeno-associated virus-mediated gene transfer into the rat retina by clinical fluorescence photography. Hum Gene Ther. 1999;10(4):641–8.

    CAS  PubMed  Google Scholar 

  40. Ali RR, et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet. 2000;25(3):306–10.

    CAS  PubMed  Google Scholar 

  41. Dalkara D, et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther. 2009;17(12):2096–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Harvey AR, et al. Intravitreal injection of adeno-associated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors. Mol Cell Neurosci. 2002;21(1):141–57.

    CAS  PubMed  Google Scholar 

  43. Yin L, et al. Intravitreal injection of AAV2 transduces macaque inner retina. Investig Ophthalmol Vis Sci. 2011;52(5):2775–83.

    CAS  Google Scholar 

  44. Yu H, et al. Longterm reversal of severe visual loss by mitochondrial gene transfer in a mouse model of Leber hereditary optic neuropathy. Sci Rep. 2018;8(1):5587.

    PubMed  PubMed Central  Google Scholar 

  45. Bainbridge JW, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2231–9.

    CAS  PubMed  Google Scholar 

  46. Hauswirth WW, et al. Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19(10):979–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Maguire AM, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cideciyan AV, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA. 2008;105(39):15112–7.

    CAS  PubMed  Google Scholar 

  49. Narfstrom K, et al. Morphological aspects related to long-term functional improvement of the retina in the 4 years following rAAV-mediated gene transfer in the RPE65 null mutation dog. Adv Exp Med Biol. 2008;613:139–46.

    PubMed  Google Scholar 

  50. Cideciyan AV, et al. Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther. 2009;20(9):999–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Maguire AM, et al. Age-dependent effects of RPE65 gene therapy for Lebers congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374(9701):1597–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Simonelli F, et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther. 2010;18(3):643–50.

    CAS  PubMed  Google Scholar 

  53. Jacobson SG, et al. Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130(1):9–24.

    CAS  PubMed  Google Scholar 

  54. Bennett J, et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med. 2012;4(120):120ra15.

    PubMed  PubMed Central  Google Scholar 

  55. Cideciyan AV, et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci USA. 2013;110(6):E517–25.

    CAS  PubMed  Google Scholar 

  56. Testa F, et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology. 2013;120(6):1283–91.

    PubMed  PubMed Central  Google Scholar 

  57. Bainbridge JW, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372(20):1887–97.

    PubMed  PubMed Central  Google Scholar 

  58. Pierce EA, Bennett J. The status of RPE65 gene therapy trials: safety and efficacy. Cold Spring Harb Perspect Med. 2015;5(9):a017285.

    PubMed  PubMed Central  Google Scholar 

  59. Bennett J, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388(10045):661–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Weleber RG, et al. Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology. 2016;123(7):1606–20.

    PubMed  Google Scholar 

  61. Le Meur, G., et al., Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis. Mol Ther. 2017.

  62. Russell S, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Redmond TM, et al. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet. 1998;20(4):344–51.

    CAS  PubMed  Google Scholar 

  64. Redmond TM, et al. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci USA. 2005;102(38):13658–63.

    CAS  PubMed  Google Scholar 

  65. Bennicelli J, et al. Reversal of blindness in animal models of Leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther J Am Soc Gene Ther. 2008;16(3):458–65.

    CAS  Google Scholar 

  66. Rolling F, et al. Gene therapeutic prospects in early onset of severe retinal dystrophy: restoration of vision in RPE65 Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Bull Mem Acad R Med Belg. 2006;161(10–12):497–508 (discussion 508–9).

    CAS  PubMed  Google Scholar 

  67. Le Meur G, et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther. 2007;14(4):292–303.

    PubMed  Google Scholar 

  68. Smith AJ, et al. AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol Ther. 2003;8(2):188–95.

    CAS  PubMed  Google Scholar 

  69. Jacobson SG, et al. Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med. 2015;372(20):1920–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pennesi ME, et al. Results at 5 years after gene therapy for RPE65-deficient retinal dystrophy. Hum Gene Ther. 2018;29(12):1428–37.

    CAS  PubMed  Google Scholar 

  71. Banin E, et al. Molecular anthropology meets genetic medicine to treat blindness in the North African Jewish population: human gene therapy initiated in Israel. Hum Gene Ther. 2010;21(12):1749–57.

    CAS  PubMed  Google Scholar 

  72. Wang X, et al. The effect of human gene therapy for RPE65-associated Leber’s congenital amaurosis on visual function: a systematic review and meta-analysis. Orphanet J Rare Dis. 2020;15(1):49.

    PubMed  PubMed Central  Google Scholar 

  73. Ghazi NG, et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet. 2016;135(3):327–43.

    CAS  PubMed  Google Scholar 

  74. Ashtari M et al. Plasticity of the human visual system after retinal gene therapy in patients with Leber’s congenital amaurosis. Sci Transl Med 2015;7(296):296ra110.

  75. Maguire AM, et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy. Ophthalmology. 2019;126(9):1273–85.

    PubMed  Google Scholar 

  76. Sorsby A, et al. Choroideremia; clinical and genetic aspects. Br J Ophthalmol. 1952;36(10):547–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Khan KN, et al. Clinical and genetic features of choroideremia in childhood. Ophthalmology. 2016;123(10):2158–65.

    PubMed  Google Scholar 

  78. Moosajee M et al. Clinical utility gene card for: choroideremia. Eur J Hum Genet. 2014;22(4).

  79. Sankila EM, et al. Aberrant splicing of the CHM gene is a significant cause of choroideremia. Nat Genet. 1992;1(2):109–13.

    CAS  PubMed  Google Scholar 

  80. Preising M, Ayuso C. Rab escort protein 1 (REP1) in intracellular traffic: a functional and pathophysiological overview. Ophthal Genet. 2004;25(2):101–10.

    CAS  PubMed  Google Scholar 

  81. Krock BL, Bilotta J, Perkins BD. Noncell-autonomous photoreceptor degeneration in a zebrafish model of choroideremia. Proc Natl Acad Sci USA. 2007;104(11):4600–5.

    CAS  PubMed  Google Scholar 

  82. Morgan JI, et al. High-resolution adaptive optics retinal imaging of cellular structure in choroideremia. Investig Ophthalmol Vis Sci. 2014;55(10):6381–97.

    Google Scholar 

  83. Tolmachova T, et al. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia. J Clin Investig. 2006;116(2):386–94.

    CAS  PubMed  Google Scholar 

  84. Cremers FP, et al. Cloning of a gene that is rearranged in patients with choroideraemia. Nature. 1990;347(6294):674–7.

    CAS  PubMed  Google Scholar 

  85. MacLaren RE, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383(9923):1129–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Edwards TL, et al. Visual acuity after retinal gene therapy for choroideremia. N Engl J Med. 2016;374(20):1996–8.

    PubMed  PubMed Central  Google Scholar 

  87. Xue K, et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nat Med. 2018;24(10):1507–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Fischer MD, et al. Changes in retinal sensitivity after gene therapy in choroideremia. Retina. 2020;40(1):160–8.

    PubMed  Google Scholar 

  89. Lam BL, et al. Choroideremia gene therapy phase 2 clinical trial: 24-month results. Am J Ophthalmol. 2019;197:65–73.

    CAS  PubMed  Google Scholar 

  90. Dimopoulos IS, et al. Two-year results after AAV2-mediated gene therapy for choroideremia: the Alberta experience. Am J Ophthalmol. 2018;193:130–42.

    PubMed  Google Scholar 

  91. Loeb JE, et al. Enhanced expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis virus posttranscriptional regulatory element: implications for gene therapy. Hum Gene Ther. 1999;10:2295–305.

    CAS  PubMed  Google Scholar 

  92. Jurkute N, et al. Clinical utility gene card for: inherited optic neuropathies including next-generation sequencing-based approaches. Eur J Hum Genet. 2019;27(3):494–502.

    CAS  PubMed  Google Scholar 

  93. Wallace DC, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–30.

    CAS  PubMed  Google Scholar 

  94. Vandenberghe LH, et al. Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Trans Med. 2011;3(112):112–9.

    Google Scholar 

  95. Boye SE, et al. Highly efficient delivery of adeno-associated viral vectors to the primate retina. Hum Gen Ther. 2016;27(8):580–97.

    CAS  Google Scholar 

  96. Takahashi K, et al. Improved intravitreal AAV-mediated inner retinal gene transduction after surgical internal limiting membrane peeling in cynomolgus monkeys. Mol Ther. 2017;25(1):296–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kizito-Tshitoko T, et al. Vitrectomy before intravitreal injection of AAV2/2 vector promotes efficient transduction of retinal ganglion cells in dogs and nonhuman primates. Hum Gen Ther Methods. 2016;27(3):122–34.

    Google Scholar 

  98. Song H, et al. Trans-ocular electric current in vivo enhances AAV-mediated retinal gene transduction after intravitreal vector administration. Mol Ther Methods Clin Dev. 2019;13:77–85.

    CAS  PubMed  Google Scholar 

  99. Guy J, et al. Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Ann Neurol. 2002;52(5):534–42.

    CAS  PubMed  Google Scholar 

  100. Cwerman-Thibault H, et al. Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss. Mol Ther Methods Clin Dev. 2015;2:15003.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang S, et al. Long-term outcomes of gene therapy for the treatment of Leber’s hereditary optic neuropathy. EBioMedicine. 2016;10:258–68.

    PubMed  PubMed Central  Google Scholar 

  102. Vignal C, et al. Safety of rAAV2/2-ND4 gene therapy for Leber hereditary optic neuropathy. Ophthalmology. 2018;125(6):945–7.

    PubMed  Google Scholar 

  103. Zhang Y, et al. Three cases of Leber’s hereditary optic neuropathy with rapid increase in visual acuity after gene therapy. Curr Gene Ther. 2019;19(2):134–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bouquet C, et al. Immune response and intraocular inflammation in patients with Leber hereditary optic neuropathy treated with intravitreal injection of recombinant adeno-associated virus 2 carrying the ND4 gene: a secondary analysis of a phase 1/2 clinical trial. JAMA Ophthalmol. 2019;137(4):399–406.

    PubMed  PubMed Central  Google Scholar 

  105. Xu L, et al. CMV-β-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1α promoter and results in therapeutic levels of human factor X in mice. Hum Gene Ther. 2001;12:563–73.

    CAS  PubMed  Google Scholar 

  106. Brooks AR, et al. Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med. 2004;6(4):395–404.

    CAS  PubMed  Google Scholar 

  107. Nieuwenhuis B, et al. Optimization of adeno-associated viral vector-mediated transduction of the corticospinal tract: comparison of four promoters. Gene Ther. 2020. https://doi.org/10.1038/s41434-020-0169-1.

    Article  PubMed  Google Scholar 

  108. Paterna JC, et al. Influence of promoter and WHV post-transcriptional regulatory element on AAV-mediated transgene expression in the rat brain. Gene Ther. 2000;7:1304–11.

    CAS  PubMed  Google Scholar 

  109. Rodger J, et al. Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells. PLoS ONE. 2012;7(2):e31061.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. LeVaillant CJ, et al. Significant changes in endogenous retinal gene expression assessed 1 year after a single intraocular injection of AAV-CNTF or AAV-BDNF. Mol Ther Methods Clin Dev. 2016;3:16078.

    PubMed  PubMed Central  Google Scholar 

  111. Zhong L, et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA. 2008;105(22):7827–32.

    CAS  PubMed  Google Scholar 

  112. Petrs-Silva H, et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther. 2011;19(2):293–301.

    CAS  PubMed  Google Scholar 

  113. Hanlon KS, et al. A novel retinal ganglion cell promoter for utility in AAV vectors. Front Neurosci. 2017;11:521.

    PubMed  PubMed Central  Google Scholar 

  114. Feuer WJ, et al. Gene therapy for Leber hereditary optic neuropathy: initial results. Ophthalmology. 2016;123(3):558–70.

    PubMed  Google Scholar 

  115. Guy J, et al. Gene therapy for Leber hereditary optic neuropathy: low- and medium-dose visual results. Ophthalmology. 2017;124(11):1621–34.

    PubMed  PubMed Central  Google Scholar 

  116. Rutledge EA, Halbert CL, Russell DW. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol. 1998;72(1):309–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Auricchio A, et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet. 2001;10(26):3075–81.

    CAS  PubMed  Google Scholar 

  118. Weber M, et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther. 2003;7(6):774–81.

    CAS  PubMed  Google Scholar 

  119. Stieger K, et al. Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors. Mol Ther. 2006;13(5):967–75.

    CAS  PubMed  Google Scholar 

  120. Georgiadis A, et al. Correction: Development of an optimized AAV2/5 gene therapy vector for Leber congenital amaurosis owing to defects in RPE65. Gene Ther. 2018;25(6):450.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gaj T, et al. Genome-editing technologies: principles and applications. Cold Spring Harbor Perspect Biol. 2016;8(12):a023754.

    Google Scholar 

  122. Benati D, et al. Gene editing prospects for treating inherited retinal diseases. J Med Genet. 2020;57:437–44.

    CAS  PubMed  Google Scholar 

  123. First CRISPR therapy dosed. Nat Biotechnol. 2020;38(4):382.

  124. Gao GP, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA. 2002;99(18):11854–9.

    CAS  PubMed  Google Scholar 

  125. Conlon TJ, et al. Efficient hepatic delivery and expression from a recombinant adeno-associated virus 8 pseudotyped alpha1-antitrypsin vector. Mol Ther. 2005;12(5):867–75.

    CAS  PubMed  Google Scholar 

  126. Louboutin JP, Wang L, Wilson JM. Gene transfer into skeletal muscle using novel AAV serotypes. J Gene Med. 2005;7(4):442–51.

    CAS  PubMed  Google Scholar 

  127. Natkunarajah M, et al. Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Ther. 2008;15(6):463–7.

    CAS  PubMed  Google Scholar 

  128. Allocca M, et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol. 2007;81(20):11372–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Cehajic-Kapetanovic J, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med. 2020;26(3):354–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Deng WT, et al. Stability and safety of an AAV vector for treating RPGR-ORF15 X-linked retinitis pigmentosa. Hum Gene Ther. 2015;26(9):593–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Alexander JJ, et al. Restoration of cone vision in a mouse model of achromatopsia. Nat Med. 2007;13(6):685–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Pang JJ, et al. Achromatopsia as a potential candidate for gene therapy. Adv Exp Med Biol. 2010;664:639–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Michalakis S, et al. Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function. Mol Ther. 2010;18(12):2057–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Komaromy AM, et al. Gene therapy rescues cone function in congenital achromatopsia. Hum Mol Genet. 2010;19(13):2581–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Carvalho LS, et al. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Hum Mol Genet. 2011;20(16):3161–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Michalakis S, et al. Gene therapy restores missing cone-mediated vision in the CNGA3-/- mouse model of achromatopsia. Adv Exp Med Biol. 2012;723:183–9.

    CAS  PubMed  Google Scholar 

  137. Pang JJ, et al. AAV-mediated cone rescue in a naturally occurring mouse model of CNGA3-achromatopsia. PLoS One. 2012;7(4):e35250.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Thiadens AA, et al. Genetic etiology and clinical consequences of complete and incomplete achromatopsia. Ophthalmology. 2009;116(10):1984–9.

    PubMed  Google Scholar 

  139. Fischer MD et al. Safety and vision outcomes of subretinal gene therapy targeting cone photoreceptors in achromatopsia: a nonrandomized controlled trial. JAMA Ophthalmol. 2020.

  140. Bush RA, et al. Preclinical dose-escalation study of intravitreal AAV-RS1 gene therapy in a mouse model of X-linked retinoschisis: dose-dependent expression and improved retinal structure and function. Hum Gene Ther. 2016;27(5):376–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Cukras C, et al. Retinal AAV8-RS1 gene therapy for X-linked retinoschisis: initial findings from a phase I/IIa trial by intravitreal delivery. Mol Ther. 2018;26(9):2282–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ramlogan-Steel CA, et al. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: trials, future directions and safety considerations. Clin Exp Ophthalmol. 2019;47(4):521–36.

    PubMed  Google Scholar 

  143. Wubben TJ, et al. Retinal neuroprotection: overcoming the translational roadblocks. Am J Ophthalmol. 2018;192:15–22.

    Google Scholar 

  144. Wubben TJ, Zacks DN, Besirli CG. Retinal neuroprotection: current strategies and future directions. Curr Opin Ophthalmol. 2019;30(3):199–205.

    PubMed  Google Scholar 

  145. Yungher BJ, Ribeiro M, Park KK. Regenerative responses and axon pathfinding of retinal ganglion cells in chronically injured mice. Investig Ophthalmol Vis Sci. 2017;58(3):1743–50.

    CAS  Google Scholar 

  146. Osborne A, et al. Design of a novel gene therapy construct to achieve sustained brain-derived neurotrophic factor signaling in neurons. Hum Gene Ther. 2018;29(7):828–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Chiha W, et al. Intravitreal application of AAV-BDNF or mutant AAV-CRMP2 protects retinal ganglion cells and stabilizes axons and myelin after partial optic nerve injury. Exp Neurol. 2020;326:113167.

    CAS  PubMed  Google Scholar 

  148. Zaninello M, et al. Inhibition of autophagy curtails visual loss in a model of autosomal dominant optic atrophy. Nat Commun. 2020;11(1):4029.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Scholl HP, et al. Emerging therapies for inherited retinal degeneration. Sci Transl Med. 2016;8(368):368rv6.

    PubMed  Google Scholar 

  150. Lu Q, et al. Comparison of AAV-mediated optogenetic vision restoration between retinal ganglion cell expression and ON bipolar cell targeting. Mol Ther Methods Clin Dev. 2020;18:15–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Friedman DS, et al. An evidence-based assessment of risk factors for the progression of ocular hypertension and glaucoma. Am J Ophthalmol. 2004;138(3 Suppl):S19–31.

    PubMed  Google Scholar 

  152. Ling C, et al. Updates on the molecular genetics of primary congenital glaucoma (Review). Exp Ther Med. 2020;20(2):968–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Gauthier AC. Childhood glaucoma genes and phenotypes: Focus on FOXC1 mutations causing anterior segment dysgenesis and hearing loss. Exp Eye Res. 2020;190:107893.

    CAS  PubMed  Google Scholar 

  154. Almasieh M, Levin LA. Neuroprotection in Glaucoma: Animal Models and Clinical Trials. Annu Rev Vis Sci. 2017;3:91–120.

    PubMed  Google Scholar 

  155. Martin KR, et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003;44(10):4357–65.

    PubMed  Google Scholar 

  156. Ren R, et al. Long-term rescue of rat retinal ganglion cells and visual function by AAV-mediated BDNF expression after acute elevation of intraocular pressure. Invest Ophthalmol Vis Sci. 2012;53(2):1003–11.

    CAS  PubMed  Google Scholar 

  157. Pease ME, et al. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci. 2009;50(5):2194–200.

    PubMed  Google Scholar 

  158. Osborne A, et al. Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 2018;9(10):1007.

    PubMed  PubMed Central  Google Scholar 

  159. Leaver SG, et al. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther. 2006;13(18):1328–41.

    CAS  PubMed  Google Scholar 

  160. Kimura A et al. Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration. Int J Mol Sci. 2016;17(9).

  161. Phatak NR, Stankowska DL, Krishnamoorthy RR. Bcl-2, Bcl-xL, and p-AKT are involved in neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma. Mol Vis. 2016;22:1048–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. McKinnon SJ, et al. Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol Ther. 2002;5:780–7.

    CAS  PubMed  Google Scholar 

  163. Tan J, et al. scAAV2-mediated C3 transferase gene therapy in a rat model with retinal ischemia/reperfusion injuries. Mol Ther Methods Clin Dev. 2020;17:894–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. McDougald DS, et al. SIRT1 and NRF2 gene transfer mediate distinct neuroprotective effects upon retinal ganglion cell survival and function in experimental optic neuritis. Investig Ophthalmol Vis Sci. 2018;59(3):1212–20.

    CAS  Google Scholar 

  165. Petratos S, et al. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain. 2012;135(Pt 2):1794–818.

    PubMed  PubMed Central  Google Scholar 

  166. Lee JY, et al. Limiting neuronal nogo receptor signaling during experimental autoimmune encephalomyelitis preserves axonal transport and abrogates inflammatory demyelination. J Neurosci. 2019;39(28):5562–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Fortune B, et al. Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma. Investig Ophthalmol Vis Sci. 2013;54(8):5653–61.

    Google Scholar 

  168. Pease ME, et al. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Investig Ophthalmol Vis Sci. 2000;41(3):764–74.

    CAS  Google Scholar 

  169. Goyal N, Narayanaswami P. Making sense of antisense oligonucleotides: a narrative review. Muscle Nerve. 2018;57(3):356–70.

    CAS  PubMed  Google Scholar 

  170. Disterer P, et al. Development of therapeutic splice-switching oligonucleotides. Hum Gene Ther. 2014;25(7):587–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Chan JH, Lim S, Wong WS. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol. 2006;33(5–6):533–40.

    CAS  PubMed  Google Scholar 

  172. Hammond SM, Wood MJ. Genetic therapies for RNA mis-splicing diseases. Trends Genet. 2011;27(5):196–205.

    CAS  PubMed  Google Scholar 

  173. Monia BP, et al. Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem. 1993;268(19):14514–22.

    CAS  PubMed  Google Scholar 

  174. Sardone V et al. Antisense oligonucleotide-based therapy for neuromuscular disease. Molecules. 2017;22(4).

  175. Temsamani J, Pari GS, Guinot P. Antisense approach for the treatment of cytomegalovirus infection. Expert Opin Investig Drugs. 1997;6(9):1157–67.

    CAS  PubMed  Google Scholar 

  176. Vazquez-Dominguez I, Garanto A, Collin RWJ. Molecular therapies for inherited retinal diseases-current standing, opportunities and challenges. Genes (Basel). 2019;10(9).

  177. Garanto A et al. Antisense oligonucleotide screening to optimize the rescue of the splicing defect caused by the recurrent deep-intronic ABCA4 variant c.4539+2001G>A in Stargardt disease. Genes (Basel). 2019;10(6).

  178. Naessens S et al. Antisense oligonucleotide-based downregulation of the G56R pathogenic variant causing NR2E3-associated autosomal dominant retinitis pigmentosa. Genes (Basel). 2019;10(5).

  179. Niu C et al. Antisense oligonucleotides targeting mutant Ataxin-7 restore visual function in a mouse model of spinocerebellar ataxia type 7. Sci Transl Med. 2018;10(465).

  180. Dulla K, et al. Splice-modulating Oligonucleotide QR-110 restores CEP290 mRNA and function in human c2991+1655A>G LCA10 models. Mol Ther Nucleic Acids. 2018;12:730–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Slijkerman RW, et al. Antisense oligonucleotide-based splice correction for USH2A-associated retinal degeneration caused by a frequent deep-intronic mutation. Mol Ther Nucleic Acids. 2016;5(10):e381.

    CAS  PubMed  Google Scholar 

  182. Xiong W, et al. AAV cis-regulatory sequences are correlated with ocular toxicity. Proc Natl Acad Sci USA. 2019;116(12):5785–94.

    CAS  PubMed  Google Scholar 

  183. Nidetz NF, et al. Adeno-associated viral vector-mediated immune responses: understanding barriers to gene delivery. Pharmacol Ther. 2020;207:107453.

    CAS  PubMed  Google Scholar 

  184. Retnet: Genes and mapped loci causing retinal diseases. https://sph.uth.edu/retnet/disease.htm. Accessed 21 Oct 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livia S. Carvalho.

Ethics declarations

Funding

This work was funded by the Lions Eye Institute (LEI), Usher 1F Collaborative and Genetics Cures Australia.

Conflict of interest

The authors declare that this review was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Authors contributions

LSC wrote the first draft of the manuscript; ARH, PFC and HB wrote sections of the manuscript and drafted the tables and all authors contributed to manuscript revision and approval of the submitted version.

Ethics approval

N/A.

Consent to participate

N/A.

Consent for publication

N/A.

Availability of data and material

N/A.

Code availability

N/A.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuller-Carter, P.I., Basiri, H., Harvey, A.R. et al. Focused Update on AAV-Based Gene Therapy Clinical Trials for Inherited Retinal Degeneration. BioDrugs 34, 763–781 (2020). https://doi.org/10.1007/s40259-020-00453-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-020-00453-8

Navigation