Skip to main content

Storage and Lyophilization of Pure Proteins

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2699))

  • 823 Accesses

Abstract

This chapter outlines empirical procedures for the storage of pure proteins with preservation of high levels of biological activity. It describes simple and workable means of preventing microbial contamination and proteolytic degradation and the use of various types of stabilizing additives. It sets out the principles of lyophilization (a complex process comprising freezing, primary drying, and secondary drying stages, otherwise known as freeze-drying). There follows a general procedure for the use of lyophilizer apparatus with emphasis on best practice and on pitfalls to avoid. The use of modulated differential scanning calorimetry to measure the glass transition temperature, a key parameter in the design and successful operation of lyophilization processes, is described. This chapter concludes with brief summaries of interesting recent work in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpenter JF, Pikal MJ, Chang BS, Randolph TW (1997) Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res [Internet] 14(8):969–975. Available from: https://doi.org/10.1023/A:1012180707283

    Article  CAS  PubMed  Google Scholar 

  2. Pikal MJ (1994) Freeze-drying of proteins. In: Formulation and delivery of proteins and peptides [Internet]. American Chemical Society; [cited 2017 Sep 24], pp 120–33. (ACS Symposium Series; vol. 567). Available from: https://doi.org/10.1021/bk-1994-0567.ch008

    Chapter  Google Scholar 

  3. Mozhaev VV (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol [Internet] [cited 2022 Mar 8];11(3):88–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/016777999390057G

    Google Scholar 

  4. Sluzky V, Klibanov AM, Langer R (1992) Mechanism of insulin aggregation and stabilization in agitated aqueous solutions. Biotechnol Bioeng [Internet]. [cited 2022 Mar 8];40(8):895–903. Available from: https://onlinelibrary.wiley.com/doi/10.1002/bit.260400805

    Article  Google Scholar 

  5. Liu WR, Langer R, Klibanov AM (1991) Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol Bioeng [Internet] [cited 2022 Mar 8];37(2):177–184. Available from: https://onlinelibrary.wiley.com/doi/10.1002/bit.260370210

    Article  Google Scholar 

  6. Costantino HR, Langer R, Klibanov AM (1995) Aggregation of a lyophilized pharmaceutical protein, recombinant human albumin: effect of moisture and stabilization by excipients. Nat Biotechnol [Internet] [cited 2022 Mar 8];13(5):493–496. Available from: http://www.nature.com/doifinder/10.1038/nbt0595-493

    Article  Google Scholar 

  7. Quax WJ (1993) Thermostable glucose isomerases. Trends Food Sci Technol [Internet] [cited 2022 Mar 8];4(2):31–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/092422449390056G

    Article  Google Scholar 

  8. Sadana A (1988) Enzyme deactivation. Biotechnol Adv [Internet] [cited 2022 Mar 8];6(3):349-IN2. Available from: https://linkinghub.elsevier.com/retrieve/pii/0734975088918903

    Google Scholar 

  9. Pikal M (2006) Freeze drying. In: Swarbick J, Boylan B (eds) Encyclopedia of pharmaceutical technology. Marcel Dekker, New York, p 1299–1326

    Google Scholar 

  10. Patel SM, Pikal MJ (2011) Emerging freeze-drying process development and scale-up issues. AAPS PharmSciTech [Internet] 12(1):372–378. Available from:. https://doi.org/10.1208/s12249-011-9599-9

    Article  PubMed  Google Scholar 

  11. Franks F (1990) Freeze-drying: from empiricism to predictability. Cryo-Lett 11:93–110

    Google Scholar 

  12. Pikal MJ (1990) Freeze-drying of proteins. Part 1: process design. BioPharm 3:18–28

    CAS  Google Scholar 

  13. Shamblin S (2004) The role of water in physical transformations in freeze dried products. American Association of Pharmaceutical Scientists, USA. (Costantino HR PM, editor. Lyophilization of Biopharmaceuticals)

    Google Scholar 

  14. Johnson RE, Oldroyd ME, Ahmed SS, Gieseler H, Lewis LM (2010) Use of Manometric Temperature Measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations. J Pharm Sci [Internet] 99(6):2863–2873. Available from: http://www.sciencedirect.com/science/article/pii/S0022354915326046

    Article  CAS  PubMed  Google Scholar 

  15. Beech KE, Biddlecombe JG, van der Walle CF, Stevens LA, Rigby SP, Burley JC et al (2015) Insights into the influence of the cooling profile on the reconstitution times of amorphous lyophilized protein formulations. Eur J Pharm Biopharm [Internet]. 96:247–254. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26253503

    Article  CAS  PubMed  Google Scholar 

  16. Meister E, Gieseler H (2009) Freeze-dry microscopy of protein/sugar mixtures: drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition data. J Pharm Sci [Internet]. 98(9):3072–3087. Available from: http://www.sciencedirect.com/science/article/pii/S0022354916330684

    Article  CAS  PubMed  Google Scholar 

  17. Depaz RA, Pansare S, Patel SM (2016) Freeze-drying above the glass transition temperature in amorphous protein formulations while maintaining product quality and improving process efficiency. J Pharm Sci [Internet]. 105(1):40–49. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26580140

    Article  CAS  PubMed  Google Scholar 

  18. Gooch JW (2011) Vapor Pressure. In: Gooch JW (ed) Encyclopedic dictionary of polymers [Internet]. Springer New York, New York, p 789. Available from: https://doi.org/10.1007/978-1-4419-6247-8_12451

    Chapter  Google Scholar 

  19. Torosantucci R, Furtmann B, Elshorst B, Pfeiffer-Marek S, Hartleb T, Andres N et al (2018) Protein-excipient interactions evaluated via nuclear magnetic resonance studies in polysorbate-based multidose protein formulations: influence on antimicrobial efficacy and potential study approach. J Pharm Sci [Internet] [cited 2022 Feb 4];107(10):2531–2537. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354918303265

    Article  Google Scholar 

  20. Beynon RJ, Bond JS (eds) (2001) Proteolytic enzymes: a practical approach, 2nd edn. Oxford University Press, Oxford; New York, p 340. (The practical approach series)

    Google Scholar 

  21. Data Sheet 78830 Sigma-Aldrich

    Google Scholar 

  22. Timasheff SN, Arakawa T (1997) Stabilisation of protein structure by solvents, pp 349–364

    Google Scholar 

  23. Qu Y, Bolen CL, Bolen DW (1998) Osmolyte-driven contraction of a random coil protein. Proc Natl Acad Sci [Internet] [cited 2022 Jan 21];95(16):9268–9273. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.95.16.9268

    Article  Google Scholar 

  24. Anjum F, Rishi V, Ahmad F (2000) Compatibility of osmolytes with Gibbs energy of stabilization of proteins. Biochim Biophys Acta BBA - Protein Struct Mol Enzymol [Internet] [cited 2022 Mar 8];1476(1):75–84. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167483899002150

    Google Scholar 

  25. Tang X, Pikal MJ (2004) Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res 21(2):191–200

    Article  CAS  PubMed  Google Scholar 

  26. Gokarn YR, Fesinmeyer RM, Saluja A, Razinkov V, Chase SF, Laue TM et al (2011) Effective charge measurements reveal selective and preferential accumulation of anions, but not cations, at the protein surface in dilute salt solutions. Protein Sci 20(3):580–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bauduin P, Renoncourt A, Touraud D, Kunz W, Ninham BW (2004) Hofmeister effect on enzymatic catalysis and colloidal structures. Curr Opin Colloid Interface Sci 9(1–2):43–47

    Article  CAS  Google Scholar 

  28. Schein CH (1990) Solubility as a function of protein structure and solvent components. Nat Biotechnol [Internet] [cited 2022 Jan 21];8(4):308–317. Available from: http://www.nature.com/doifinder/10.1038/nbt0490-308

    Article  Google Scholar 

  29. Andersson MM, Hatti-Kaul R (1999) Protein stabilising effect of polyethyleneimine. J Biotechnol [Internet] [cited 2022 Mar 8];72(1–2):21–31. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168165699000504

    Google Scholar 

  30. Marcozzi G, Di Domenico C, Spreti N (1998) Effects of surfactants on the stabilization of the Bovine Lactoperoxidase activity. Biotechnol Prog [Internet] [cited 2022 Mar 8];14(4):653–656. Available from: http://doi.wiley.com/10.1021/bp980051o

    Article  Google Scholar 

  31. Volkin DB, Klibanov AM (1989) Minimising protein inactivation. In: Protein Function, a practical approach (Creighton TE, ed.) IRL Press Oxford pp 1–24

    Google Scholar 

  32. Scopes RK (1994) Protein purification: principles and practice. Springer, New York

    Book  Google Scholar 

  33. Hatley RHM, Franks F, Mathias SF (1987) The stabilization of labile biomolecules by undercooling. Process Biochem 22:169–172

    CAS  Google Scholar 

  34. Franks F (ed) (1993) Protein biotechnology: isolation, characterization, and stabilization. Humana Press, Totowa, p 592. (Biological methods)

    Google Scholar 

  35. Franks F, Hatley RHM, Matthias SF (1991) Materials science and the production of shelf-stable biologicals. Pharm Technol Int 3:24–34

    Google Scholar 

  36. Franks F, Hatley RHM (1992) Storage of Materials. US Patent 5,098,893

    Google Scholar 

  37. Walters RH, Bhatnagar B, Tchessalov S, Izutsu K-I, Tsumoto K, Ohtake S (2014) Next generation drying technologies for pharmaceutical applications. J Pharm Sci [Internet] [cited 2022 Mar 8];103(9):2673–2695. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354915304330

    Article  Google Scholar 

  38. Jangle R, Pisal S (2012) Vacuum foam drying: an alternative to lyophilization for biomolecule preservation. Indian J Pharm Sci [Internet] [cited 2022 Mar 8];74(2):91. Available from: http://www.ijpsonline.com/text.asp?2012/74/2/91/103837

    Article  Google Scholar 

  39. Bhatnagar BS, Tchessalov S, Lewis LM, Johnson R (2013) Freeze drying of biologics. In: Encyclopedia of pharmaceutical science and technology, fourth edition [Internet]. [cited 2017 Sep 27]. CRC Press, pp 1673–1722. Available from:. https://doi.org/10.1081/E-EPT4-120050277

    Chapter  Google Scholar 

  40. Wang W (2000) Lyophilization and development of solid protein pharmaceuticals. Int J Pharm [Internet]. 203(1):1–60. Available from: http://www.sciencedirect.com/science/article/pii/S0378517300004233

    CAS  PubMed  Google Scholar 

  41. Roy ML, Pikal MJ (1989) Process control in freeze drying: determination of the end point of sublimation drying by an electronic moisture sensor. J Parenter Sci Technol 43:60–66

    CAS  PubMed  Google Scholar 

  42. Franks F (1998) Freeze-drying of bioproducts: putting principles into practice. Eur J Pharm Biopharm [Internet] [cited 2022 Mar 8];45(3):221–229. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0939641198000046

    Article  Google Scholar 

  43. Thuma RS, Giegel JL, Posner AH (1987) Manufacture of quality control materials. In: Laboratory quality assurance. McGraw-Hill, New York, pp 101–123

    Google Scholar 

  44. Trappler E (2004) Lyophilisation equipment. American Association of Pharmaceutical Scientists. (Costantino HR PM, editor. Lyophilisation of Biopharmaceuticals)

    Google Scholar 

  45. Chang L, Shepherd D, Sun J, Ouellette D, Grant KL, Tang XC et al (2005) Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J Pharm Sci 94(7):1427–1444

    Article  CAS  PubMed  Google Scholar 

  46. Lu X, Pikal MJ (2004) Freeze-drying of mannitol-trehalose-sodium chloride-based formulations: the impact of annealing on dry layer resistance to mass transfer and cake structure. Pharm Dev Technol 9(1):85–95

    Article  CAS  PubMed  Google Scholar 

  47. Franks F (1994) Long-term stabilization of biologicals. Nat Biotech [Internet]. print;12(3):253–256. Available from: https://doi.org/10.1038/nbt0394-253

  48. Carpenter JF, Crowe JH (1989) An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochem Int 28(9):3916–3922. Available from: https://doi.org/10.1021/bi00435a044

    CAS  Google Scholar 

  49. Allison SD, Chang B, Randolph TW, Carpenter JF (1999) Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Arch Biochem Biophys 365(2):289–298

    Article  CAS  PubMed  Google Scholar 

  50. Levine H, Slade L (1988) Thermomechanical properties of small-carbohydrate–water glasses and ‘rubbers’. Kinetically metastable systems at sub-zero temperatures. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 84(8):2619–2633

    Google Scholar 

  51. Izutsu K, Yoshioka S, Kojima S (1994) Physical stability and protein stability of freeze-dried cakes during storage at elevated temperatures. Pharm Res 11(7):995–999

    Article  CAS  PubMed  Google Scholar 

  52. Arakawa T, Prestrelski SJ, Kenney WC, Carpenter JF (2001) Factors affecting short-term and long-term stabilities of proteins. Adv Drug Deliv Rev 46(1–3):307–326

    Article  CAS  PubMed  Google Scholar 

  53. Pikal MJ (1990) Freeze-drying of proteins. Part 2: formulation selection. BioPharm. 3:26–30

    CAS  Google Scholar 

  54. Blanchard JS (1984) Buffers for enzymes. Meths Enzymol 104:404–414

    Article  CAS  Google Scholar 

  55. Heller MC, Carpenter JF, Randolph TW (1999) Protein formulation and lyophilization cycle design: prevention of damage due to freeze-concentration induced phase separation. Biotechnol Bioeng [Internet]. 63(2):166–174. Available from: https://doi.org/10.1002/(SICI)1097-0290(19990420)63:2<166::AID-BIT5>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  56. Her LM, Nail SL (1994) Measurement of glass transition temperatures of freeze-concentrated solutes by differential scanning calorimetry. Pharm Res 11(1):54–59

    Article  CAS  PubMed  Google Scholar 

  57. Kalogeras I, Hagg Lobland H (2012) The nature of the glassy state:structure and glass transitions. J Mater Educ 34(3–4):69–94

    CAS  Google Scholar 

  58. Jameel F, Searles J (2010) Development and optimization of the freeze-drying processes. In: Formulation and process development strategies for manufacturing biopharmaceuticals [Internet]. Wiley, pp 763–796. Available from: https://doi.org/10.1002/9780470595886.ch30

    Chapter  Google Scholar 

  59. Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86(1):1–12

    Article  CAS  PubMed  Google Scholar 

  60. Ediger MD, Angell CA, Nagel SR. (1996) Supercooled Liquids and Glasses. J Phys Chem 100(31):13200–13212

    Google Scholar 

  61. Berthier L, Biroli G (2011) Theoretical perspective on the glass transition nd amorphous materials. Rev Mod Phys 83(2):87–645

    Google Scholar 

  62. Pikal MJ, Shah S (1990) The collapse temperature in freeze drying: dependence on measurement methodology and rate of water removal from the glassy phase. Int J Pharm [Internet]. 62(2):165–186. Available from: http://www.sciencedirect.com/science/article/pii/037851739090231R

    Article  CAS  Google Scholar 

  63. Colandene JD, Maldonado LM, Creagh AT, Vrettos JS, Goad KG, Spitznagel TM (2007) Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent. J Pharm Sci [Internet]. 96(6):1598–1608. Available from: http://www.sciencedirect.com/science/article/pii/S0022354916322717

    Article  CAS  PubMed  Google Scholar 

  64. MacKenzie AP (1976) The physico-chemical basis for the freeze-drying process. Dev Biol Stand 36:51–67

    CAS  PubMed  Google Scholar 

  65. Levi G, Karel M (1995) Volumetric shrinkage (collapse) in freeze-dried carbohydrates above their glass transition temperature. Food Res Int [Internet] 28(2):145–151. Available from: http://www.sciencedirect.com/science/article/pii/096399699590798F

    Article  CAS  Google Scholar 

  66. Chang BS, Patro SY (2004) Freeze-drying process development for protein pharmaceuticals. American Association of Pharmaceutical Scientists, USA. (Costantino HR PM, editor. Lyophilization of Biopharmaceuticals)

    Google Scholar 

  67. Adams GD, Ramsay JR (1996) Optimizing the lyophilization cycle and the consequences of collapse on the pharmaceutical acceptability of Erwinia L-asparaginase. J Pharm Sci 85(12):1301–1305

    Article  CAS  PubMed  Google Scholar 

  68. Pikal MJ, Shah S, Roy ML, Putman R (1990) The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure. Int J Pharm [Internet] 60(3):203–207. Available from: http://www.sciencedirect.com/science/article/pii/037851739090074E

    Article  CAS  Google Scholar 

  69. Passot S, Fonseca F, Barbouche N, Marin M, Alarcon-Lorca M, Rolland D et al (2007) Effect of product temperature during primary drying on the long-term stability of lyophilized proteins. Pharm Dev Technol 12(6):543–553

    Article  CAS  PubMed  Google Scholar 

  70. Milton N, Pikal MJ, Roy ML, Nail SL (1997) Evaluation of manometric temperature measurement as a method of monitoring product temperature during lyophilization. PDA J Pharm Sci Technol 51(1):7–16

    CAS  PubMed  Google Scholar 

  71. Overcashier DE, Patapoff TW, Hsu CC (1999) Lyophilization of protein formulations in vials: investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse. J Pharm Sci 88(7):688–695

    Article  CAS  PubMed  Google Scholar 

  72. Oetjen G-W, Haseley P (2004) Freeze-drying. [Internet]. Wiley-VCH, Weinheim. [cited 2022 Feb 17]. Available from: http://www.myilibrary.com?id=131173

    Google Scholar 

  73. Haseley P (2008) Freeze-Drying. [Internet]. Wiley. [cited 2022 Feb 17]. Available from: http://www.myilibrary.com?id=131173

    Google Scholar 

  74. Rambhatla S, Ramot R, Bhugra C, Pikal MJ (2004) Heat and mass transfer scale-up issues during freeze drying: II. Control and characterization of the degree of supercooling. AAPS PharmSciTech 5(4):e58

    Article  PubMed  Google Scholar 

  75. Patel SM, Bhugra C, Pikal MJ (2009) Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying. AAPS PharmSciTech [Internet]. received;10(4):1406. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799604/

    Article  Google Scholar 

  76. Heller MC, Carpenter JF, Randolph TW (1996) Effects of phase separating systems on lyophilized hemoglobin. J Pharm Sci 85(12):1358–1362

    Article  CAS  PubMed  Google Scholar 

  77. Chang BS, Kendrick BS, Carpenter JF (1996) Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J Pharm Sci 85(12):1325–1330

    Article  CAS  PubMed  Google Scholar 

  78. Franks F (1993) Conformational stability of proteins. In: Franks F (ed) Protein biotechnology: isolation, characterization, and stabilization. Humana Press, Totowa, pp 395–496. Available from: https://doi.org/10.1007/978-1-59259-438-2_11

    Chapter  Google Scholar 

  79. Sabelko J, Ervin J, Gruebele M (1998) Cold-denatured ensemble of Apomyoglobin: implications for the early steps of folding. J Phys Chem B [Internet] 102(10):1806–1819. Available from: https://doi.org/10.1021/jp973178p

    Article  CAS  Google Scholar 

  80. Yan R, DeLos RP, Pastore A, Temussi PA (2018) The cold denaturation of IscU highlights structure–function dualism in marginally stable proteins. Commun Chem [Internet] [cited 2022 Feb 4];1(1):13. Available from: http://www.nature.com/articles/s42004-018-0015-1

    Article  Google Scholar 

  81. Sanfelice D, Temussi PA (2016) Cold denaturation as a tool to measure protein stability. Biophys Chem [Internet] [cited 2022 Jan 21];208:4–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301462215001064

    Google Scholar 

  82. Privalov PL (1990) Cold denaturation of protein. Crit Rev Biochem Mol Biol [Internet] [cited 2022 Mar 8];25(4):281–306. Available from: http://www.tandfonline.com/doi/full/10.3109/10409239009090612

    Google Scholar 

  83. Randolph TW (1997) Phase separation of excipients during lyophilization: effects on protein stability. J Pharm Sci [Internet]. 86(11):1198–1203. Available from: https://doi.org/10.1021/js970135b

    Article  CAS  PubMed  Google Scholar 

  84. Searles JA, Carpenter JF, Randolph TW (2001) The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. J Pharm Sci 90(7):860–871

    Article  CAS  PubMed  Google Scholar 

  85. Bhatnagar BS, Martin SW, Hodge TS, Das TK, Joseph L, Teagarden DL et al (2011) Investigation of PEG crystallization in frozen and freeze-dried PEGylated recombinant human growth hormone-sucrose systems: implications on storage stability. J Pharm Sci 100(8):3062–3075

    Article  CAS  PubMed  Google Scholar 

  86. Esfandiary R, Gattu SK, Stewart JM, Patel SM (2016) Effect of freezing on Lyophilization process performance and drug product cake appearance. J Pharm Sci [Internet] 4AD;105(4):1427–1433. Available from: http://www.sciencedirect.com/science/article/pii/S0022354916003282

    Article  Google Scholar 

  87. Bhatnagar BS, Bogner RH, Pikal MJ (2007) Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol 12(5):505–523

    Article  CAS  PubMed  Google Scholar 

  88. Searles JA, Carpenter JF, Randolph TW (2001) Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine T’g in pharmaceutical lyophilization. J Pharm Sci [Internet]. [cited 2022 Mar 8];90(7):872–887. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354916307808

    Article  Google Scholar 

  89. Chang BS, Patro SY (2004) Freeze-drying process development for protein pharmaceuticals. In 978-0-9711767-6-8 pp 113–138

    Google Scholar 

  90. Bolje A, Gobec S (2021) Analytical techniques for structural characterization of proteins in solid pharmaceutical forms: an overview. Pharmaceutics [Internet] 13(4) Available from: https://www.ncbi.nlm.nih.gov/pubmed/33920461

  91. Franks F, Murase N (1992) Nucleation and crystallization in aqueous systems during drying: theory and practice. Pure Appl Chem [Internet] [cited 2022 Mar 8];64(11):1667–1672. Available from: https://www.degruyter.com/document/doi/10.1351/pac199264111667/html

    Article  Google Scholar 

  92. Chouvenc P, Vessot S, Andrieu J, Vacus P (2005) Optimization of the freeze-drying cycle: adaptation of the pressure rise analysis model to non-instantaneous isolation valves. PDA J Pharm Sci Technol 59(5):298–309

    CAS  PubMed  Google Scholar 

  93. Patel SM, Nail SL, Pikal MJ, Geidobler R, Winter G, Hawe A et al (2017) Lyophilized drug product cake appearance: what is acceptable? J Pharm Sci [Internet]. 106(7):1706–1721. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28341598

    Article  CAS  PubMed  Google Scholar 

  94. Kirkwood TBL (1984) Design and analysis of accelerated degradation tests for the stability of biological standards III. Principles of design. J Biol Stand [Internet] [cited 2022 Mar 8];12(2):215–224. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092115784800566

    Article  Google Scholar 

  95. Jerne NK, Perry WLM (1956) The stability of biological standards. Bull Wld Hlth Org 14:167–182

    CAS  Google Scholar 

  96. Malcolm BA, Wilson KP, Matthews BW, Kirsch JF, Wilson AC (1990) Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. Nature [Internet] [cited 2022 Mar 8];345(6270):86–89. Available from: http://www.nature.com/articles/345086a0

    Article  Google Scholar 

  97. Gibson TD, Higgins IJ, Woodward JR (1992) Stabilization of analytical enzymes using a novel polymer–carbohydrate system and the production of a stabilized, single reagent for alcohol analysis. The Analyst [Internet] [cited 2022 Mar 8];117(8):1293–1297. Available from: http://xlink.rsc.org/?DOI=AN9921701293

    Article  Google Scholar 

  98. Shamblin SL (2004) The role of water in physical transformations in freeze dried products. In 978-0-9711767-6-8 pp 229–270

    Google Scholar 

  99. Hancock BC, Zografi G (1994) The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res [Internet] [cited 2022 Mar 8];11(4):471–477. Available from: http://link.springer.com/10.1023/A:1018941810744

    Article  Google Scholar 

  100. Hancock BC, Shamblin SL, Zografi G (1995) Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res [Internet] [cited 2022 Mar 8];12(6):799–806. Available from: http://link.springer.com/10.1023/A:1016292416526

    Article  Google Scholar 

  101. Bell LN, Hageman MJ (1994) Differentiating between the effects of water activity and glass transition dependent mobility on a solid state chemical reaction: aspartame degradation. J Agric Food Chem [Internet] [cited 2022 Mar 8];42(11):2398–2401. Available from: https://pubs.acs.org/doi/abs/10.1021/jf00047a007

    Article  Google Scholar 

  102. Lechuga-Ballesteros D, Miller DP, Duddu SP (2004) Thermal analysis of lyophilized pharmaceutical and protein formulation. In Lyophilization of Biopharmaceuticals (Costantino HR, Pikal MJ, eds.) 978-0-9711767-6-8 pp 271–336

    Google Scholar 

  103. Franks F (1994) Accelerated stability testing of bioproducts: attractions and pitfalls. Trends Biotechnol [Internet] [cited 2022 Mar 8];12(4):114–117. Available from: https://linkinghub.elsevier.com/retrieve/pii/0167779994900876

    Article  Google Scholar 

  104. Awotwe-Otoo D, Agarabi C, Khan MA (2014) An integrated Process Analytical Technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations. J Pharm Sci [Internet]. [cited 2022 Mar 8];103(7):2042–2052. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354915305153

    Article  Google Scholar 

  105. Patel SM, Pikal MJ (2013) Lyophilization process design space. J Pharm Sci [Internet] [cited 2022 Mar 8];102(11):3883–3887. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354915308522

    Article  Google Scholar 

  106. Kasper JC, Wiggenhorn M, Resch M, Friess W (2013) Implementation and evaluation of an optical fiber system as novel process monitoring tool during lyophilization. Eur J Pharm Biopharm [Internet] [cited 2022 Mar 8];83(3):449–459. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0939641112003359

    Article  Google Scholar 

  107. Hédoux A, Paccou L, Achir S, Guinet Y (2012) In situ monitoring of proteins during lyophilization using micro-Raman spectroscopy: a description of structural changes induced by dehydration. J Pharm Sci [Internet]. [cited 2022 Mar 8];101(7):2316–2326. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354915315458

    Article  Google Scholar 

  108. Kasper JC, Winter G, Friess W (2013) Recent advances and further challenges in lyophilization. Eur J Pharm Biopharm [Internet] [cited 2022 Mar 8];85(2):162–169. Available from: https://linkinghub.elsevier.com/retrieve/pii/S093964111300218X

    Article  Google Scholar 

  109. Kasper JC, Friess W (2011) The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm [Internet] [cited 2022 Mar 8];78(2):248–263. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0939641111001111

    Article  Google Scholar 

  110. Kodama T, Sawada H, Hosomi H, Takeuchi M, Wakiyama N, Yonemochi E et al (2014) Optimization of primary drying condition for pharmaceutical lyophilization using a novel simulation program with a predictive model for dry layer resistance. Chem Pharm Bull (Tokyo) [Internet] [cited 2022 Mar 8];62(2):153–159. Available from: https://www.jstage.jst.go.jp/article/cpb/62/2/62_c13-00674/_article

    Article  Google Scholar 

  111. Rambhatla S, Tchessalov S, Pikal MJ (2006) Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests. AAPS PharmSciTech 7:39

    Article  Google Scholar 

  112. Fonte P, Araújo F, Seabra V, Reis S, van de Weert M, Sarmento B (2015) Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization. Int J Pharm [Internet] [cited 2022 Mar 8];496(2):850–862. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517315303008

    Article  Google Scholar 

  113. Roughton BC, Iyer LK, Bertelsen E, Topp EM, Camarda KV (2013) Protein aggregation and lyophilization: protein structural descriptors as predictors of aggregation propensity. Comput Chem Eng [Internet] [cited 2021 Dec 9];58:369–377. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0098135413002287

    Article  Google Scholar 

  114. Trout BL, Pisano R, Capozzi LC (2021) Freeze-drying methods and related products. US 20210180865A9

    Google Scholar 

  115. De Beer T, Corver J (2019) Method and apparatus for freeze-drying. EP 3 500 811 B1

    Google Scholar 

  116. Tang X, Ludwig DB (2018) Room temperature stable lyophilized protein. WO 2018/068012 Al

    Google Scholar 

  117. Weimer KL, Johnson NT, Hlavinka DJ, Parakininkas KP. Lyophilization container and method of using same. WO 2019 074886 A1

    Google Scholar 

  118. Dern CD (2020) Energy recovery in a freeze-drying system. US 010782070 B2

    Google Scholar 

  119. Gong M, Zhao Y, Guo H, Shen J, Dong X (2021) Low-temperature quick-freezing freeze-drying system. US; US 10900713 B2

    Google Scholar 

  120. Borges Sebastião I, Bhatnagar B, Tchessalov S (2021) A kinetic model for spray-freezing of pharmaceuticals. J Pharm Sci [Internet] [cited 2022 Feb 4];110(5):2047–2062. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354920307620

    Article  Google Scholar 

  121. Mutukuri TT, Wilson NE, Taylor LS, Topp EM, Zhou QT (2021) Effects of drying method and excipient on the structure and physical stability of protein solids: freeze drying vs. spray freeze drying. Int J Pharm [Internet]. [cited 2022 Feb 4];594:120169. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517320311546

    Article  Google Scholar 

  122. Koshari SHS, Nayak PK, Burra S, Zarraga IE, Rajagopal K, Liu Y et al (2019) In situ characterization of the microstructural evolution of biopharmaceutical solid-state formulations with implications for protein stability. Mol Pharm [Internet] [cited 2022 Feb 4];16(1):173–183. Available from: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.8b00935

    Article  Google Scholar 

  123. Wilson NE, Topp EM, Zhou QT (2019) Effects of drying method and excipient on structure and stability of protein solids using solid-state hydrogen/deuterium exchange mass spectrometry (ssHDX-MS). Int J Pharm [Internet]. [cited 2022 Feb 4];567:118470. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517319305125

    Article  Google Scholar 

  124. Chen Y, Ling J, Li M, Su Y, Arte KS, Mutukuri TT et al (2021) Understanding the impact of protein–excipient interactions on physical stability of spray-dried protein solids. Mol Pharm [Internet] [cited 2022 Feb 4];18(7):2657–2668. Available from: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.1c00189

    Article  Google Scholar 

  125. Jena S, Horn J, Suryanarayanan R, Friess W, Aksan A (2017) Effects of excipient interactions on the state of the freeze-concentrate and protein stability. Pharm Res [Internet] [cited 2022 Feb 4];34(2):462–478. Available from: http://link.springer.com/10.1007/s11095-016-2078-y

    Article  Google Scholar 

  126. Nitika N, Chhabra H, Rathore AS (2021) Raman spectroscopy for in situ, real time monitoring of protein aggregation in lyophilized biotherapeutic products. Int J Biol Macromol [Internet] [cited 2022 Feb 4];179:309–313. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813021005146

    Article  Google Scholar 

  127. Bramham JE, Podmore A, Davies SA, Golovanov AP (2021) Comprehensive assessment of protein and excipient stability in biopharmaceutical formulations using 1 H NMR spectroscopy. ACS Pharmacol Transl Sci [Internet] [cited 2022 Feb 4];4(1):288–295. Available from: https://pubs.acs.org/doi/10.1021/acsptsci.0c00188

    Article  Google Scholar 

  128. Wen L, Zheng X, Wang X, Lan H, Yin Z (2017) Bilateral effects of excipients on protein stability: preferential interaction type of excipient and surface aromatic hydrophobicity of protein. Pharm Res [Internet] [cited 2022 Feb 4];34(7):1378–1390. Available from: http://link.springer.com/10.1007/s11095-017-2152-0

    Article  Google Scholar 

  129. Platts L, Darby SJ, Falconer RJ (2016) Control of globular protein thermal stability in aqueous formulations by the positively charged amino acid excipients. J Pharm Sci [Internet] [cited 2022 Feb 4];105(12):3532–3536. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354916417077

    Article  Google Scholar 

  130. Katz JS, Nolin A, Yezer BA, Jordan S (2019) Dynamic properties of novel excipient suggest mechanism for improved performance in liquid stabilization of protein biologics. Mol Pharm [Internet] [cited 2022 Feb 4];16(1):282–291. Available from: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.8b00984

    Article  Google Scholar 

  131. Panuszko A, Bruździak P, Kaczkowska E, Stangret J (2016) General mechanism of Osmolytes’ influence on protein stability irrespective of the type of Osmolyte Cosolvent. J Phys Chem B [Internet] [cited 2022 Feb 4];120(43):11159–11169. Available from: https://pubs.acs.org/doi/10.1021/acs.jpcb.6b10119

    Article  Google Scholar 

  132. Canepa J, Torgerson J, Kim DK, Lindahl E, Takahashi R, Whitelock K et al (2020) Characterizing osmolyte chemical class hierarchies and functional group requirements for thermal stabilization of proteins. Biophys Chem [Internet] [cited 2022 Feb 4];264:106410. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301462220301186

    Article  Google Scholar 

  133. Jethva PN, Udgaonkar JB (2018) The Osmolyte TMAO modulates protein folding cooperativity by altering global protein stability. Biochem Int [cited 2022 Feb 4];57(40):5851–5863. Available from: https://pubs.acs.org/doi/10.1021/acs.biochem.8b00698

    Google Scholar 

  134. Robinson MJ, Matejtschuk P, Longstaff C, Dalby PA (2019) Selective stabilization and destabilization of protein domains in tissue-type plasminogen activator using formulation excipients. Mol Pharm [Internet] [cited 2022 Feb 4];16(2):744–755. Available from: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.8b01024

    Article  Google Scholar 

  135. Arsiccio A, McCarty J, Pisano R, Shea J-E (2020) Heightened cold-denaturation of proteins at the ice–water interface. J Am Chem Soc [Internet] [cited 2022 Feb 4];142(12):5722–5730. Available from: https://pubs.acs.org/doi/10.1021/jacs.9b13454

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciarán Ó’Fágáin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ó’Fágáin, C., Colliton, K. (2023). Storage and Lyophilization of Pure Proteins. In: Loughran, S.T., Milne, J.J. (eds) Protein Chromatography. Methods in Molecular Biology, vol 2699. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3362-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3362-5_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3361-8

  • Online ISBN: 978-1-0716-3362-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics