Skip to main content

Unraveling Plant-Pathogen Interactions in Cereals Using RNA-seq

  • Protocol
  • First Online:
Plant-Pathogen Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2659))

Abstract

Over the past two decades, there have been significant advancements in the realm of transcriptomics, or the study of genes and their expression. Modern RNA sequencing technologies and high-performance computing are creating a “big data” revolution that provides new opportunities to explore the interactions between cereals and pathogens that affect grain yield and food safety. These data are being used to annotate genes and gene variants, as well as identify differentially expressed genes and create global gene co-expression networks. Moreover, these data can unravel the complex interactions between pathogen and host and identify genes and pathways involved in these interactions. This information can then be used for disease mitigation and the development of crops with superior resistance.

Bronwyn E. Rowland is the primary author to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray TD, Parry DW, Cattlin ND (2009) Diseases of small grain cereal crops: a colour handbook, Softcover edn. Manson Pub, London

    Google Scholar 

  2. Nilsen KT, Walkowiak S, Kumar S et al (2021) Histology and RNA sequencing provide insights into Fusarium head blight resistance in AAC Tenacious. Front Plant Sci 11:2114

    Article  Google Scholar 

  3. McMullen M, Bergstrom G, De Wolf E et al (2012) A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis 96:1712–1728

    Article  PubMed  Google Scholar 

  4. Cole MB, Augustin MA, Robertson MJ, Manners JM (2018) The science of food security. NPJ Sci Food 2:14

    Article  PubMed  PubMed Central  Google Scholar 

  5. Raza A, Razzaq A, Mehmood SS et al (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cavicchioli R, Ripple WJ, Timmis KN et al (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17:569–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garrett KA, Nita M, De Wolf ED et al (2021) Chapter 24: Plant pathogens as indicators of climate change. In: Letcher TM (ed) Climate change, 3rd edn. Elsevier, pp 499–513

    Chapter  Google Scholar 

  8. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  9. Walkowiak S, Gao L, Monat C et al (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588:277–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. The International Wheat Genome Sequencing Consortium (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Article  Google Scholar 

  11. Ramírez-González RH, Borrill P, Lang D et al (2018) The transcriptional landscape of polyploid wheat. Science 361(6403):eaar6089

    Article  PubMed  Google Scholar 

  12. Walkowiak S, Bonner CT, Wang L et al (2015) Intraspecies interaction of Fusarium graminearum contributes to reduced toxin production and virulence. Mol Plant-Microbe Interact 28:1256–1267

    Article  CAS  PubMed  Google Scholar 

  13. Walkowiak S, Rowland O, Rodrigue N, Subramaniam R (2016) Whole genome sequencing and comparative genomics of closely related Fusarium Head Blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum. BMC Genomics 17:1014

    Article  PubMed  PubMed Central  Google Scholar 

  14. Puri KD, Yan C, Leng Y, Zhong S (2016) RNA-seq revealed differences in transcriptomes between 3ADON and 15ADON populations of Fusarium graminearum in vitro and in planta. PLoS One 11:e0163803

    Article  PubMed  PubMed Central  Google Scholar 

  15. Giani AM, Gallo GR, Gianfranceschi L, Formenti G (2020) Long walk to genomics: history and current approaches to genome sequencing and assembly. Comp Struct Biotechnol J 18:9–19

    Article  CAS  Google Scholar 

  16. Lenoir T, Giannella E (2006) The emergence and diffusion of DNA microarray technology. J Biomed Discov Collab 1:11–11

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weirauch MT (2011) Gene coexpression networks for the analysis of DNA microarray data. Applied Statistics for Network Biology, pp 215–250

    Google Scholar 

  18. Schena M (1996) Genome analysis with gene expression microarrays. BioEssays 18:427–431

    Article  CAS  PubMed  Google Scholar 

  19. Hon T, Mars K, Young G et al (2020) Highly accurate long-read HiFi sequencing data for five complex genomes. Sci Data 7:399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson MTJ, Carpenter EJ, Tian Z et al (2012) Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One 7:e50226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giardine B, Riemer C, Hardison RC et al (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 5:1451–1455

    Article  Google Scholar 

  22. Conesa A, Madrigal P, Tarazona S et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  25. Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21:1859–1875

    Article  CAS  PubMed  Google Scholar 

  28. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:W465–W467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kovaka S, Zimin AV, Pertea GM et al (2019) Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol 20:278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols 7:562–578

    Article  CAS  PubMed  Google Scholar 

  32. Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protocols 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  33. Keilwagen J, Hartung F, Grau J (2019) GeMoMa: homology-based gene prediction utilizing intron position conservation and RNA-seq data. Methods Mol Biol (Clifton, NJ) 1962:161–177

    Article  CAS  Google Scholar 

  34. Hunter S, Apweiler R, Attwood TK et al (2008) InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–D215

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yao Z, You FM, N’Diaye A et al (2020) Evaluation of variant calling tools for large plant genome re-sequencing. BMC Bioinform 21:360

    Article  CAS  Google Scholar 

  36. Cingolani P, Platts A, Wang LL et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6:80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haile JK, N’Diaye A, Walkowiak S et al (2019) Fusarium head blight in durum wheat: recent status, breeding directions, and future research prospects. Phytopathology 109:1664–1675

    Article  CAS  PubMed  Google Scholar 

  38. Jin M, Liu H, He C et al (2016) Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Sci Rep 6:18936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jupe F, Witek K, Verweij W et al (2013) Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J 76:530–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liao Y, Smyth GK, Shi W (2013) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  PubMed  Google Scholar 

  41. Anders S, Pyl PT, Huber W (2015) HTSeq – a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  42. Lawrence M, Huber W, Pagès H et al (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  44. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shostak K, Bonner C, Sproule A et al (2020) Activation of biosynthetic gene clusters by the global transcriptional regulator TRI6 in Fusarium graminearum. Mol Microbiol 114:664–680

    Article  CAS  PubMed  Google Scholar 

  46. Fauteux F, Wang Y, Rocheleau H et al (2019) Characterization of QTL and eQTL controlling early Fusarium graminearum infection and deoxynivalenol levels in a Wuhan 1 x Nyubai doubled haploid wheat population. BMC Plant Biol 19:536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bolouri H (2014) Modeling genomic regulatory networks with big data. Trends Genet 30:182–191

    Article  CAS  PubMed  Google Scholar 

  48. Yu H, Huang J, Zhang W, Han J-DJ (2011) Network analysis to interpret complex phenotypes. Applied Statistics for Network Biology, pp 1–12

    Google Scholar 

  49. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Article  Google Scholar 

  50. Zhang J, Huang K (2014) Normalized ImQCM: an algorithm for detecting weak quasi-cliques in weighted graph with applications in gene co-expression module discovery in cancers. Cancer Inform 13s3:CIN.S14021

    Article  Google Scholar 

  51. Grimes T, Potter SS, Datta S (2019) Integrating gene regulatory pathways into differential network analysis of gene expression data. Sci Rep 9:5479

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang M, Li Q, Yu D et al (2019) GeNeCK: a web server for gene network construction and visualization. BMC Bioinform 20:12

    Article  Google Scholar 

  54. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  CAS  PubMed  Google Scholar 

  55. Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  Google Scholar 

  56. Farahbod M (2019) The interpretation of gene coexpression in systems biology. Doctoral dissertation, University of British Columbia. https://doi.org/10.14288/1.0387518

  57. Li H, Sun Y, Zhan M (2009) Exploring pathways from gene co-expression to network dynamics. Methods Mol Biol (Clifton, NJ) 541:249–267

    Article  CAS  Google Scholar 

  58. Sari E, Cabral AL, Polley B et al (2019) Weighted gene co-expression network analysis unveils gene networks associated with the Fusarium head blight resistance in tetraploid wheat. BMC Genomics 20:925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gardiner DM, Kazan K, Manners JM (2009) Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Mol Plant-Microbe Interact 22:1588–1600

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kirby T. Nilsen , Rajagopal Subramaniam or Sean Walkowiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rowland, B.E., Henriquez, M.A., Nilsen, K.T., Subramaniam, R., Walkowiak, S. (2023). Unraveling Plant-Pathogen Interactions in Cereals Using RNA-seq. In: Foroud, N.A., Neilson, J.A.D. (eds) Plant-Pathogen Interactions. Methods in Molecular Biology, vol 2659. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3159-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3159-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3158-4

  • Online ISBN: 978-1-0716-3159-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics