Skip to main content

Exploring Pathways from Gene Co-expression to Network Dynamics

  • Protocol
  • First Online:
Computational Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 541))

Abstract

One of the major challenges in post-genomic research is to understand how physiological and pathological phenotypes arise from the networks or connectivity of expressed genes. In addressing this issue, we have developed two computational algorithms, CoExMiner and PathwayPro, to explore static features of gene co-expression and dynamic behaviors of gene networks. CoExMiner is based on B-spline approximation followed by the coefficient of determination (CoD) estimation for modeling gene co-expression patterns. The algorithm allows the exploration of transcriptional responses that involve coordinated expression of genes encoding proteins which work in concert in the cell. PathwayPro is based on a finite-state Markov chain model for mimicking dynamic behaviors of a transcriptional network. The algorithm allows quantitative assessment of a wide range of network responses, including susceptibility to disease, potential usefulness of a given drug, and consequences of such external stimuli as pharmacological interventions or caloric restriction. We demonstrated the applications of CoExMiner and PathwayPro by examining gene expression profiles of ligands and receptors in cancerous and non-cancerous cells and network dynamics of the leukemia-associated BCR–ABL pathway. The examinations disclosed both linear and nonlinear relationships of ligand–receptor interactions associated with cancer development, identified disease and drug targets of leukemia, and provided new insights into biology of the diseases. The analysis using these newly developed algorithms show the great usefulness of computational systems biology approaches for biological and medical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitano H. Computational systems biology. Nature 2002, 420(6912):206–10.

    Article  PubMed  CAS  Google Scholar 

  2. Ideker T, Galitski T, Hood L. A new approach to decoding life: Systems biology. Annu Rev Genomics Hum Genet 2001, 2:343–72.

    Article  PubMed  CAS  Google Scholar 

  3. Schulze A, Downward J. Navigating gene expression using microarrays – A technology review. Nat Cell Biol 2002, 3:E190–E195.

    Article  Google Scholar 

  4. Savoie CJ, Aburatani S, Watanabe S, et al. Use of gene networks from full genome microarray libraries to identify functionally relevant drug-affected genes and gene regulation cascades. DNA Res 2003, 10(1):19–25.

    Article  PubMed  CAS  Google Scholar 

  5. Imoto S, Savoie CJ, Aburatani S, et al. Use of gene networks for identifying and validating drug targets. J Bioinform Comput Biol 2003, 1(3):459–74.

    Article  PubMed  CAS  Google Scholar 

  6. Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global discovery of conserved genetic modules. Science 2003, 302(5643):249–55.

    Article  PubMed  CAS  Google Scholar 

  7. Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P. Coexpression analysis of human genes across many microarray data sets. Genome Res 2004, 14(6):1085–94.

    Article  PubMed  CAS  Google Scholar 

  8. van Noort V, Snel B, Huynen MA. The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Rep 2004, 5(3):280–84.

    Article  PubMed  Google Scholar 

  9. Carter SL, Brechbuhler CM, Griffin M, Bond AT. Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 2004, 20(14):2242–50.

    Article  PubMed  CAS  Google Scholar 

  10. Graeber TG, Eisenberg D. Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles. Nat Genet 2001, 29(3):295–300.

    Article  PubMed  CAS  Google Scholar 

  11. Butte AJ, Kohane IS. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 2000:418–29.

    Google Scholar 

  12. Herrgard MJ, C overt MW, Palsson BO. Reconciling gene expression data with known genome-scale regulatory network structures. Genome Res 2003, 13(11):2423–34.

    Article  PubMed  CAS  Google Scholar 

  13. Imoto S, Goto T, Miyano S. Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pac Symp Biocomput 2002:175–86.

    Google Scholar 

  14. Zhou X, Wang X, Dougherty ER. Construction of genomic networks using mutual-information clustering and reversible-jump Markov-Chain Monte-Carlo predictor design. Signal Processing 2003, 83(4):745–61.

    Article  Google Scholar 

  15. Li H, Sun Y, Zhan M. Analysis of gene coexpression by B-spline based CoD estimation. EURASIP J Bioinform Syst Biol 2007, 2007:Article ID 49478, 10 pages.

    Google Scholar 

  16. Dougherty ER, Kim S, Chen Y. Coefficient of determination in nonlinear signal processing. Signal Processing 2000, 80:2219–35.

    Article  Google Scholar 

  17. Hashimoto R, Kim S, Shmulevich I, Zhang W, Bittner ML, Dougherty ER. Growing genetic regulatory networks from seed genes. Bioinformatics 2004, 20:1241–47.

    Article  PubMed  CAS  Google Scholar 

  18. Huang S. Genomics, complexity and drug discovery: Insights from Boolean network models of cellular regulation. Pharmacogenomics 2001, 2(3):203–22.

    Article  PubMed  CAS  Google Scholar 

  19. Kim S, Li H, Dougherty ER, et al. Can Markov chain models mimic biological regulation? J Biol Syst 2002, 10(4):337–57.

    Article  Google Scholar 

  20. Shmulevich I, Dougherty ER, Zhang W. Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics 2002, 18(10):1319–31.

    Article  PubMed  CAS  Google Scholar 

  21. de Jong H. Modeling and simulation of genetic regulatory systems: A literature review. J Comput Biol 2002, 9(1):67–103.

    Article  PubMed  Google Scholar 

  22. Smolen P, Baxter DA, Byrne JH. Modeling transcriptional control in gene networks – methods, recent results, and future directions. Bull Math Biol 2000, 62(2):247–92.

    Article  PubMed  CAS  Google Scholar 

  23. Li H, Zhan M. Systematic intervention of transcription for identifying network response to disease and cellular phenotypes. Bioinformatics 2006, 22(1):96–102.

    Article  PubMed  Google Scholar 

  24. Prautzsch H, Boehm W, Paluszny M. BĂ©zier and B-spline techniques. Berlin, New York: Springer, 2002.

    Google Scholar 

  25. Cinlar E. Introduction to Stochastic Processes. New Jersey: Prentice Hall, 1975.

    Google Scholar 

  26. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucl Acids Res 2003, 31(4):e15.

    Article  PubMed  Google Scholar 

  27. Brubaker KD, Corey E, Brown LG, Vessella RL. Bone morphogenetic protein signaling in prostate cancer cell lines. J Cell Biochem 2004, 91(1):151–60.

    Article  PubMed  CAS  Google Scholar 

  28. Yang S, Zhong C, Frenkel B, Reddi AH, Roy-Burman P. Diverse biological effect and Smad signaling of bone morphogenetic protein 7 in prostate tumor cells. Cancer Res 2005, 65(13):5769–77.

    Article  PubMed  CAS  Google Scholar 

  29. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410(6824):50–56.

    Article  PubMed  CAS  Google Scholar 

  30. Wang JM, Deng X, Gong W, Su S. Chemokines and their role in tumor growth and metastasis. J Immunol Methods 1998, 220(1–2):1–17.

    Article  PubMed  CAS  Google Scholar 

  31. Crossman LC, Mori M, Hsieh YC, et al. In chronic myeloid leukemia white cells from cytogenetic responders and non-responders to imatinib have very similar gene expression signatures. Haematologica 2005, 90(4):459–64.

    PubMed  CAS  Google Scholar 

  32. Stegmaier K, Ross KN, Colavito SA, O'Malley S, Stockwell BR, Golub TR. Gene expression-based high-throughput screening(GE-HTS) and application to leukemia differentiation. Nat Genet 2004, 36(3):257–63.

    Article  PubMed  CAS  Google Scholar 

  33. Zou X, Calame K. Signaling pathways activated by oncogenic forms of Abl tyrosine kinase. J Biol Chem 1999, 274(26):18141–44.

    Article  PubMed  CAS  Google Scholar 

  34. Raitano AB, Whang YE, Sawyers CL. Signal transduction by wild-type and leukemogenic Abl proteins. Biochim Biophys Acta 1997, 1333:201–16.

    Google Scholar 

  35. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990, 247:1079–82.

    Article  PubMed  CAS  Google Scholar 

  36. Druker BJ, Sawyers CL, Kantarjian H. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001, 344:1038–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Intramural Research Program, National Institute on Aging, NIH.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, H., Sun, Y., Zhan, M. (2009). Exploring Pathways from Gene Co-expression to Network Dynamics. In: Ireton, R., Montgomery, K., Bumgarner, R., Samudrala, R., McDermott, J. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 541. Humana Press. https://doi.org/10.1007/978-1-59745-243-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-243-4_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-905-5

  • Online ISBN: 978-1-59745-243-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics