Skip to main content

Generation of Radioresistant Prostate Cancer Cells

  • Protocol
  • First Online:
Cancer Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2645))

  • 670 Accesses

Abstract

The development of in vitro isogenic models of radioresistance through exposure to fractionated radiation is an increasingly used approach to investigate the mechanisms of radioresistance in cancer cells. Owing to the complex nature of the biological effect of ionizing radiation, the generation and validation of these models requires the careful consideration of radiation exposure protocols and cellular endpoints. This chapter presents a protocol we used to derive and characterize an isogenic model of radioresistant prostate cancer cells. This protocol may be applicable to other cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lievens Y, Borras JM, Grau C (2020) Provision and use of radiotherapy in Europe. Mol Oncol 14(7):1461–1469. https://doi.org/10.1002/1878-0261.12690

    Article  PubMed  PubMed Central  Google Scholar 

  2. Friedland W, Dingfelder M, Kundrat P, Jacob P (2011) Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res 711(1–2):28–40. https://doi.org/10.1016/j.mrfmmm.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  3. Ward JF (1990) The yield of DNA double-strand breaks produced intracellularly by ionizing radiation: a review. Int J Radiat Biol 57(6):1141–1150. https://doi.org/10.1080/09553009014551251

    Article  CAS  PubMed  Google Scholar 

  4. Shikazono N, Noguchi M, Fujii K, Urushibara A, Yokoya A (2009) The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation. J Radiat Res 50(1):27–36. https://doi.org/10.1269/jrr.08086

    Article  CAS  PubMed  Google Scholar 

  5. Pinkawa M, Piroth MD, Holy R, Klotz J, Djukic V, Corral NE et al (2012) Dose-escalation using intensity-modulated radiotherapy for prostate cancer – evaluation of quality of life with and without (18)F-choline PET-CT detected simultaneous integrated boost. Radiat Oncol 7:14. https://doi.org/10.1186/1748-717X-7-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walsh S, Roelofs E, Kuess P, Lambin P, Jones B, Georg D et al (2016) A validated tumor control probability model based on a meta-analysis of low, intermediate, and high-risk prostate cancer patients treated by photon, proton, or carbon-ion radiotherapy. Med Phys 43(2):734–747. https://doi.org/10.1118/1.4939260

    Article  CAS  PubMed  Google Scholar 

  7. Sidaway P (2016) Prostate cancer: proton therapy delays progression. Nat Rev Urol 13(4):181. https://doi.org/10.1038/nrurol.2016.50

    Article  PubMed  Google Scholar 

  8. Tamponi M, Gabriele D, Maggio A, Stasi M, Meloni GB, Conti M et al (2019) Prostate cancer dose-response, fractionation sensitivity and repopulation parameters evaluation from 25 international radiotherapy outcome data sets. Br J Radiol 92(1098):20180823. https://doi.org/10.1259/bjr.20180823

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dugle DL, Gillespie CJ, Chapman JD (1976) DNA strand breaks, repair, and survival in x-irradiated mammalian cells. Proc Natl Acad Sci U S A 73(3):809–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krause M, Yaromina A, Eicheler W, Koch U, Baumann M (2011) Cancer stem cells: targets and potential biomarkers for radiotherapy. Clin Cancer Res 17(23):7224–7229. https://doi.org/10.1158/1078-0432.CCR-10-2639

    Article  CAS  PubMed  Google Scholar 

  11. Devine A, Marignol L (2016) Potential of Amifostine for chemoradiotherapy and radiotherapy-associated toxicity reduction in advanced NSCLC: a meta-analysis. Anticancer Res 36(1):5–12

    CAS  PubMed  Google Scholar 

  12. Leiker AJ, Desai NB, Folkert MR (2018) Rectal radiation dose-reduction techniques in prostate cancer: a focus on the rectal spacer. Future Oncol 14(26):2773–2788. https://doi.org/10.2217/fon-2018-0286

    Article  CAS  PubMed  Google Scholar 

  13. Coppes RP, van der Goot A, Lombaert IM (2009) Stem cell therapy to reduce radiation-induced normal tissue damage. Semin Radiat Oncol 19(2):112–121. https://doi.org/10.1016/j.semradonc.2008.11.005

    Article  PubMed  Google Scholar 

  14. Wengner AM, Scholz A, Haendler B (2020) Targeting DNA damage response in prostate and breast cancer. Int J Mol Sci 21(21). https://doi.org/10.3390/ijms21218273

  15. Quinn DI, Sandler HM, Horvath LG, Goldkorn A, Eastham JA (2017) The evolution of chemotherapy for the treatment of prostate cancer. Ann Oncol 28(11):2658–2669. https://doi.org/10.1093/annonc/mdx348

    Article  CAS  PubMed  Google Scholar 

  16. Madan RA, Gulley JL (2017) Prostate cancer immunotherapy: the path forward. Curr Opin Support Palliat Care 11(3):225–230. https://doi.org/10.1097/SPC.0000000000000278

    Article  PubMed  PubMed Central  Google Scholar 

  17. Boss MK, Bristow R, Dewhirst MW (2014) Linking the history of radiation biology to the hallmarks of cancer. Radiat Res 181(6):561–577. https://doi.org/10.1667/RR13675.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schulz A, Meyer F, Dubrovska A, Borgmann K (2019) Cancer stem cells and radioresistance: DNA repair and beyond. Cancers (Basel) 11(6). https://doi.org/10.3390/cancers11060862

  19. Zaider M, Hanin L (2011) Tumor control probability in radiation treatment. Med Phys 38(2):574–583. https://doi.org/10.1118/1.3521406

    Article  PubMed  Google Scholar 

  20. McDermott N, Meunier A, Lynch TH, Hollywood D, Marignol L (2014) Isogenic radiation resistant cell lines: development and validation strategies. Int J Radiat Biol 90(2):115–126. https://doi.org/10.3109/09553002.2014.873557

    Article  CAS  PubMed  Google Scholar 

  21. Inder S, Bates M, Ni Labhrai N, McDermott N, Schneider J, Erdmann G et al (2019) Multiplex profiling identifies clinically relevant signalling proteins in an isogenic prostate cancer model of radioresistance. Sci Rep 9(1):17325. https://doi.org/10.1038/s41598-019-53799-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319. https://doi.org/10.1038/nprot.2006.339

    Article  CAS  PubMed  Google Scholar 

  23. Schipler A, Iliakis G (2013) DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res 41(16):7589–7605. https://doi.org/10.1093/nar/gkt556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arnould C, Legube G (2020) The secret life of chromosome loops upon DNA double-strand break. J Mol Biol 432(3):724–736. https://doi.org/10.1016/j.jmb.2019.07.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jasin M, Haber JE (2016) The democratization of gene editing: insights from site-specific cleavage and double-strand break repair. DNA Repair (Amst) 44:6–16. https://doi.org/10.1016/j.dnarep.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  26. Shibata A, Jeggo PA (2020) Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks. DNA Repair (Amst) 93:102915. https://doi.org/10.1016/j.dnarep.2020.102915

    Article  CAS  PubMed  Google Scholar 

  27. Jeggo PA, Geuting V, Lobrich M (2011) The role of homologous recombination in radiation-induced double-strand break repair. Radiother Oncol 101(1):7–12. https://doi.org/10.1016/j.radonc.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  28. Leatherbarrow EL, Harper JV, Cucinotta FA, O’Neill P (2006) Induction and quantification of gamma-H2AX foci following low and high LET-irradiation. Int J Radiat Biol 82(2):111–118. https://doi.org/10.1080/09553000600599783

    Article  CAS  PubMed  Google Scholar 

  29. Iliakis G, Mladenov E, Mladenova V (2019) Necessities in the processing of DNA double strand breaks and their effects on genomic instability and cancer. Cancers (Basel) 11(11). https://doi.org/10.3390/cancers11111671

  30. Sia J, Szmyd R, Hau E, Gee HE (2020) Molecular mechanisms of radiation-induced cancer cell death: a primer. Front Cell Dev Biol 8:41. https://doi.org/10.3389/fcell.2020.00041

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hill MA (2020) Radiation track structure: how the spatial distribution of energy deposition drives biological response. Clin Oncol (R Coll Radiol) 32(2):75–83. https://doi.org/10.1016/j.clon.2019.08.006

    Article  CAS  PubMed  Google Scholar 

  32. Eriksson D, Stigbrand T (2010) Radiation-induced cell death mechanisms. Tumour Biol 31(4):363–372. https://doi.org/10.1007/s13277-010-0042-8

    Article  PubMed  Google Scholar 

  33. McDermott N, Meunier A, Mooney B, Nortey G, Hernandez C, Hurley S et al (2016) Fractionated radiation exposure amplifies the radioresistant nature of prostate cancer cells. Sci Rep 6:34796. https://doi.org/10.1038/srep34796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yaromina A, Krause M, Baumann M (2012) Individualization of cancer treatment from radiotherapy perspective. Mol Oncol 6(2):211–221. https://doi.org/10.1016/j.molonc.2012.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  35. Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J et al (2016) Radiation oncology in the era of precision medicine. Nat Rev Cancer 16(4):234–249. https://doi.org/10.1038/nrc.2016.18

    Article  CAS  PubMed  Google Scholar 

  36. McDermott N, Meunier A, Wong S, Buchete V, Marignol L (2017) Profiling of a panel of radioresistant prostate cancer cells identifies deregulation of key miRNAs. Clin Transl Radiat Oncol 2:63–68. https://doi.org/10.1016/j.ctro.2017.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ruutu M, Johansson B, Grenman R, Syrjanen K, Syrjanen S (2004) Effect of confluence state and passaging on global cancer gene expression pattern in oral carcinoma cell lines. Anticancer Res 24(5A):2627–2631

    CAS  PubMed  Google Scholar 

  38. Wenger SL, Senft JR, Sargent LM, Bamezai R, Bairwa N, Grant SG (2004) Comparison of established cell lines at different passages by karyotype and comparative genomic hybridization. Biosci Rep 24(6):631–639. https://doi.org/10.1007/s10540-005-2797-5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Marignol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marignol, L. (2023). Generation of Radioresistant Prostate Cancer Cells. In: Movia, D., Prina-Mello, A. (eds) Cancer Cell Culture. Methods in Molecular Biology, vol 2645. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3056-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3056-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3055-6

  • Online ISBN: 978-1-0716-3056-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics