Skip to main content

SNP Genotyping with Amplifluor-Like Method

  • Protocol
  • First Online:
Plant Genotyping

Abstract

For SNP genotyping, amplification of fluorescence (Amplifluor) is a popular and actively developing method in the plant sciences. The “Amplifluor-like” is a “home-made” modification of the original commercial Amplifluor method. Amplifluor-like genotyping requires two essential components: (1) two allele-specific forward primers targeting the SNP site with one common reverse primer; and (2) a universal part with two non-allele-specific molecular probes containing one of the two used fluorophores and a quencher. Allele discrimination is based on the fluorescence score, where the dominance of one dye over the other confirms the presence of each specific SNP allele. The Amplifluor-like method is similar to commercial KASP and original Amplifluor methods but is much cheaper because all components can be ordered as regular and modified oligos. The easily adaptable Amplifluor-like method can be modified by any researcher to make it suitable for available instruments, reagents and conditions in low-budget laboratories for SNP genotyping of any plant species with identified genetic polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen X, Sullivan PF (2003) Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics J 3:77–96. https://doi.org/10.1038/sj.tpj.6500167

    Article  CAS  Google Scholar 

  2. Kim S, Misra A (2007) SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320. https://doi.org/10.1146/annurev.bioeng.9.060906.152037

    Article  CAS  Google Scholar 

  3. Ragoussis J (2009) Genotyping technologies for genetic research. Annu Rev Genomics Hum Genet 10:117–133. https://doi.org/10.1146/annurev-genom-082908-150116

    Article  CAS  Google Scholar 

  4. You Q, Yang X, Peng Z, Xu L, Wang J (2018) Development and applications of a high throughput genotyping tool for polyploid crops: single nucleotide polymorphism (SNP) array. Front Plant Sci 9:104. https://doi.org/10.3389/fpls.2018.00104

    Article  Google Scholar 

  5. Morgil H, Gercek YC, Tulum I (2020) Single nucleotide polymorphisms (SNPs) in plant genetics and breeding. In: Çalışkan M (ed) The recent topics in genetic polymorphisms. InTech Open, London, pp 825–400. https://doi.org/10.5772/intechopen.91886

    Chapter  Google Scholar 

  6. Schramm C, Shavrukov Y, Anderson P, Kurishbaev A, Jatayev S (2019) Development of single nucleotide polymorphism (SNP) markers for cereal breeding and crop research: current methods and future prospects. In: Ordon F, Friedt W (eds) Advances in breeding techniques for cereal crops. BD Publishing, Cambridge, pp 327–362. https://doi.org/10.19103/AS.2019.0051.16

    Chapter  Google Scholar 

  7. Kaur A, Kaur P, Ahuja S (2020) Förster resonance energy transfer (FRET) and applications thereof. Anal Methods 12:5532–5550. https://doi.org/10.1039/d0ay01961e

    Article  CAS  Google Scholar 

  8. Nazarenko IA, Bhatnagar SK, Hohman RJ (1997) A closed tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Res 25:2516–2521. https://doi.org/10.1093/nar/25.12.2516

    Article  CAS  Google Scholar 

  9. Myakishev MV, Khripin Y, Hu S, Hamer DH (2001) High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res 11:163–169. https://doi.org/10.1101/gr.157901

    Article  CAS  Google Scholar 

  10. Khripin Y (2006) High-throughput genotyping with energy transfer-labeled primers. In: Didenko VV (ed) Methods in molecular biology: fluorescent energy transfer nucleic acid probes: designs and protocols, vol 335. Humana Press, Totowa, pp 215–240

    Chapter  Google Scholar 

  11. Bengra C, Mifflin TE, Khripin Y, Manunta P, Williams SM, Jose PA et al (2002) Genotyping of essential hypertension single-nucleotide polymorphisms by a homogeneous PCR method with universal energy transfer primers. Clin Chem 48:2131–2140. https://doi.org/10.1093/clinchem/48.12.2131

    Article  CAS  Google Scholar 

  12. Fuhrman LE, Shianna KV, Aballay A (2008) High-throughput isolation and mapping of C. elegans mutants susceptible to pathogen infection. PLoS One 3:e2882. https://doi.org/10.1371/journal.pone.0002882

    Article  CAS  Google Scholar 

  13. Giancola S, McKhann HI, Bérard A, Camilleri C, Durand S, Libeau P et al (2006) Utilization of the three high-throughput SNP genotyping methods, the GOOD assay, Amplifluor and TaqMan, in diploid and polyploid plants. Theor Appl Genet 112:1115–1124. https://doi.org/10.1007/s00122-006-0213-6

    Article  CAS  Google Scholar 

  14. La Paz JL, Esteve T, Pla M (2007) Comparison of real-time PCR detection chemistries and cycling modes using Mon810 event-specific assays as model. J Agric Food Chem 55:4312–4318. https://doi.org/10.1021/jf063725g

    Article  CAS  Google Scholar 

  15. Gašparič BM, Tengs T, La Paz JL, Holst-Jensen A, Pla M, Esteve T et al (2010) Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Anal Bioanal Chem 396:2023–2029. https://doi.org/10.1007/s00216-009-3418-0

    Article  CAS  Google Scholar 

  16. Kadirvel P, Veerraju C, Senthilvel S, Yadav P, Usha Kiran B, Shaik M et al (2020) Marker-assisted selection for fast-track breeding of high oleic lines in safflower (Carthamus tinctorious L.). Ind Crops Prod 158:112983. https://doi.org/10.1016/j.indcrop.2020.112983

    Article  CAS  Google Scholar 

  17. Rickert AM, Borodina TA, Kuhn EJ, Lehrach H, Sperling S (2004) Refinement of single-nucleotide polymorphism genotyping methods on human genomic DNA: amplifluor allele-specific polymerase chain reaction versus ligation detection reaction-TaqMan. Anal Biochem 330:288–297. https://doi.org/10.1016/j.ab.2004.03.035

    Article  CAS  Google Scholar 

  18. Jatayev S, Kurishbaev A, Zotova L, Khasanova G, Serikbay D, Zhubatkanov A et al (2017) Advantages of Amplifluor-like SNP markers over KASP in plant genotyping. BMC Plant Biol 17:254. https://doi.org/10.1186/s12870-017-1197-x

    Article  CAS  Google Scholar 

  19. Khassanova G, Kurishbayev A, Jatayev S, Zhubatkanov A, Zhumalin A, Turbekova A et al (2019) Intracellular vesicle trafficking genes, RabC-GTP, are highly expressed under salinity and rapid dehydration but down-regulated by drought in leaves of chickpea (Cicer arietinum L.). Front Genet 10:40. https://doi.org/10.3389/fgene.2019.00040

    Article  CAS  Google Scholar 

  20. Yerzhebayeva R, Abekova A, Konysbekov K, Bastaubayeva S, Kabdrakhmanova A, Absattarova A et al (2018) Two sugar beet chitinase genes, BvSP2 and BvSE2, analysed with SNP Amplifluor-like markers, are highly expressed after Fusarium root rot inoculations and field susceptibility trial. PeerJ 6:e5127. https://doi.org/10.7717/peerj.5127

    Article  CAS  Google Scholar 

  21. Baidyussen A, Aldammas M, Kurishbayev A, Myrzabaeva M, Zhubatkanov A, Sereda G et al (2020) Identification, gene expression and genetic polymorphism of zinc finger A20/AN1 stress-associated genes, HvSAP, in salt stressed barley from Kazakhstan. BMC Plant Biol 20:156. https://doi.org/10.1186/s12870-020-02332-4

    Article  CAS  Google Scholar 

  22. Baidyussen A, Jatayev S, Khassanova G, Amantayev B, Sereda G, Sereda S et al (2021) Expression of specific alleles of zinc-finger transcription factors, HvSAP8 and HvSAP16, and corresponding SNP markers, are associated with drought tolerance in barley populations. Int J Mol Sci 22:12156. https://doi.org/10.3390/ijms222212156

    Article  CAS  Google Scholar 

  23. Absattar T, Absattarova A, Fillipova N, Otemissova A, Shavrukov Y (2018) Diversity array technology (DArT) 56K analysis, confirmed by SNP markers, distinguishes one сrested wheatgrass Agropyron species from two others found in Kazakhstan. Mol Breed 38:37. https://doi.org/10.1007/s11032-018-0792-3

    Article  CAS  Google Scholar 

  24. Shavrukov Y, Zhumalin A, Serikbay D, Botayeva M, Otemisova A, Absattarova A et al (2016) Expression level of the DREB2-type gene, identified with Amplifluor SNP markers, correlates with performance and tolerance to dehydration in bread wheat cultivars from Northern Kazakhstan. Front Plant Sci 7:1736. https://doi.org/10.3389/fpls.2016.01736

    Article  Google Scholar 

  25. Murray MG, Thompson WF (1980) Rapid isolation of height molecular weight plant DNA. Nucleic Acids Res 8:4321–4326. https://doi.org/10.1093/nar/8.19.4321

    Article  CAS  Google Scholar 

  26. Weining S, Langridge P (1991) Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor Appl Genet 82:209–216. https://doi.org/10.1007/BF00226215

    Article  CAS  Google Scholar 

  27. Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ, Tester M et al (2010) HvNax3 – a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Funct Integr Genomics 10:277–291. https://doi.org/10.1007/s10142-009-0153-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Bolashak International Fellowships, Center for International Programs (GK and SK), and Research project AP14869777 (GK), Ministry of Education and Science, Kazakhstan. We want to thank Carly Schramm for critical comment of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Shavrukov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khassanova, G. et al. (2023). SNP Genotyping with Amplifluor-Like Method. In: Shavrukov, Y. (eds) Plant Genotyping. Methods in Molecular Biology, vol 2638. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3024-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3024-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3023-5

  • Online ISBN: 978-1-0716-3024-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics