Skip to main content

Dissection, Fixation, and Standard Staining of Adult Drosophila Ovaries

  • Protocol
  • First Online:
Drosophila Oogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2626))

  • 1048 Accesses

Abstract

Studies of the Drosophila ovary have provided significant insight into the molecular and cellular processes that control cell function, tissue organization, and animal development. To characterize mutants with defects in oogenesis or to observe the distribution of gene products involved in egg production, the ovaries must be carefully extracted and prepared for analysis. This chapter describes the manual dissection of ovaries from adult Drosophila females, followed by standard fixation and staining of the isolated tissue. Specifically, this chapter provides procedures for simple DNA and F-actin staining to assess cell and tissue morphology, as well as immunostaining to localize proteins of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinnant TD, Merkle JA, Ables ET (2020) Coordinating proliferation, polarity, and cell fate in the Drosophila female germline. Front Cell Dev Biol 8:19. https://doi.org/10.3389/fcell.2020.00019

    Article  Google Scholar 

  2. Mahowald A, Kambysellis M (1980) Oogenesis. In: Ashburner M, Wright T (eds) The genetics and biology of Drosophila, 2nd edn. Academic Press, pp 141–225

    Google Scholar 

  3. McLaughlin JM, Bratu DP (2015) Drosophila melanogaster oogenesis: an overview. In: Bratu DP, McNeil GP (eds) Drosophila oogenesis. Springer New York, New York, pp 1–20

    Google Scholar 

  4. Merkle JA, Wittes J, Schüpbach T (2020) Signaling between somatic follicle cells and the germline patterns the egg and embryo of Drosophila. In: Current topics in developmental biology. Elsevier, pp 55–86

    Google Scholar 

  5. Spradling A (1993) Developmental genetics of oogenesis. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Press, Cold Spring Harbor, pp 1–70

    Google Scholar 

  6. Blatt P, Martin ET, Breznak SM, Rangan P (2020) Post-transcriptional gene regulation regulates germline stem cell to oocyte transition during Drosophila oogenesis. In: Current topics in developmental biology. Elsevier, pp 3–34. https://doi.org/10.1016/bs.ctdb.2019.10.003

    Chapter  Google Scholar 

  7. Drummond-Barbosa D (2019) Local and physiological control of germline stem cell lineages in Drosophila melanogaster. Genetics 213:9–26. https://doi.org/10.1534/genetics.119.300234

    Article  CAS  Google Scholar 

  8. Eliazer S, Buszczak M (2011) Finding a niche: studies from the Drosophila ovary. Stem Cell Res Ther 2:45. https://doi.org/10.1186/scrt86

    Article  Google Scholar 

  9. Flora P, McCarthy A, Upadhyay M, Rangan P (2017) Role of chromatin modifications in Drosophila germline stem cell differentiation. In: Arur S (ed) Signaling-mediated control of cell division. Springer International Publishing, pp 1–30

    Google Scholar 

  10. Riechmann V (2017) In vivo RNAi in the Drosophila follicular epithelium: analysis of stem cell maintenance, proliferation, and differentiation. In: Zhang B (ed) RNAi and small regulatory RNAs in stem cells. Springer New York, New York, pp 185–206

    Chapter  Google Scholar 

  11. Slaidina M, Gupta S, Banisch TU, Lehmann R (2021) A single-cell atlas reveals unanticipated cell type complexity in Drosophila ovaries. Genome Res 31:1938–1951. https://doi.org/10.1101/gr.274340.120

    Article  Google Scholar 

  12. Wu X, Tanwar PS, Raftery LA (2008) Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol 19:271–282. https://doi.org/10.1016/j.semcdb.2008.01.004

    Article  CAS  Google Scholar 

  13. Ables ET, Hwang GH, Finger DS et al (2016) A genetic mosaic screen reveals ecdysone-responsive genes regulating Drosophila oogenesis. G3 Bethesda 6:2629–2642. https://doi.org/10.1534/g3.116.028951

    Article  CAS  Google Scholar 

  14. Czech B, Preall JB, McGinn J, Hannon GJ (2013) A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol Cell 50:749–761. https://doi.org/10.1016/j.molcel.2013.04.007

    Article  CAS  Google Scholar 

  15. Gans M, Audit C, Masson M (1975) Isolation and characterization of sex-linked female-sterile mutants in Drosophila melanogaster. Genetics 81:683–704. https://doi.org/10.1093/genetics/81.4.683

    Article  CAS  Google Scholar 

  16. Hayashi R, Wainwright SM, Liddell SJ et al (2014) A genetic screen based on in vivo RNA imaging reveals centrosome-independent mechanisms for localizing gurken transcripts in Drosophila. G3 Bethesda 4:749–760. https://doi.org/10.1534/g3.114.010462

    Article  CAS  Google Scholar 

  17. Jagut M, Mihaila-Bodart L, Molla-Herman A et al (2013) A mosaic genetic screen for genes involved in the early steps of Drosophila oogenesis. G3 Bethesda. https://doi.org/10.1534/g3.112.004747

  18. Jambor H, Surendranath V, Kalinka AT et al (2015) Systematic imaging reveals features and changing localization of mRNAs in Drosophila development. eLife 4:e05003. https://doi.org/10.7554/eLife.05003

    Article  Google Scholar 

  19. Jia D, Soylemez M, Calvin G et al (2015) A large-scale in vivo RNAi screen to identify genes involved in Notch-mediated follicle cell differentiation and cell cycle switches. Sci Rep 5:12328. https://doi.org/10.1038/srep12328

    Article  CAS  Google Scholar 

  20. Lee M-C, Skora AD, Spradling AC (2017) Identification of genes mediating Drosophila follicle cell progenitor differentiation by screening for modifiers of GAL4::UAS variegation. G3 Bethesda 7:309–318. https://doi.org/10.1534/g3.116.036038

    Article  CAS  Google Scholar 

  21. Sanchez CG, Teixeira FK, Czech B et al (2016) Regulation of ribosome biogenesis and protein synthesis controls germline stem cell differentiation. Cell Stem Cell 18:276–290. https://doi.org/10.1016/j.stem.2015.11.004

    Article  CAS  Google Scholar 

  22. Schüpbach T, Wieschaus E (1989) Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. Genetics 121:101–117. https://doi.org/10.1093/genetics/121.1.101

    Article  Google Scholar 

  23. Schüpbach T, Wieschaus E (1991) Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129:1119–1136

    Article  Google Scholar 

  24. Tootle TL, Williams D, Hubb A et al (2011) Drosophila eggshell production: identification of new genes and coordination by Pxt. PLoS One 6:e19943. https://doi.org/10.1371/journal.pone.0019943

    Article  CAS  Google Scholar 

  25. Wittes J, Schüpbach T (2019) A gene expression screen in Drosophila melanogaster identifies novel JAK/STAT and EGFR targets during oogenesis. G3 Bethesda 9:47–60. https://doi.org/10.1534/g3.118.200786

    Article  CAS  Google Scholar 

  26. Abbaszadeh EK, Gavis ER (2016) Fixed and live visualization of RNAs in Drosophila oocytes and embryos. Methods 98:34–41. https://doi.org/10.1016/j.ymeth.2016.01.018

    Article  CAS  Google Scholar 

  27. Cetera M, Lewellyn L, Horne-Badovinac S (2016) Cultivation and live imaging of Drosophila ovaries. In: Dahmann C (ed) Drosophila. Springer New York, New York, pp 215–226

    Chapter  Google Scholar 

  28. Dai W, Montell DJ (2016) Live imaging of border cell migration in Drosophila. In: Jin T, Hereld D (eds) Chemotaxis. Springer New York, New York, pp 153–168

    Chapter  Google Scholar 

  29. Haack T, Bergstralh DT, St Johnston D (2013) Damage to the Drosophila follicle cell epithelium produces “false clones” with apparent polarity phenotypes. Biol Open 2:1313–1320. https://doi.org/10.1242/bio.20134671

    Article  Google Scholar 

  30. Hudson AM, Cooley L (2014) Methods for studying oogenesis. Methods 68:207–217. https://doi.org/10.1016/j.ymeth.2014.01.005

    Article  CAS  Google Scholar 

  31. Peters NC, Berg CA (2016) In vitro culturing and live imaging of Drosophila egg chambers: a history and adaptable method. In: Nezis IP (ed) Oogenesis. Springer New York, New York, pp 35–68

    Chapter  Google Scholar 

  32. Shalaby NA, Buszczak M (2017) Live-cell imaging of the adult Drosophila ovary using confocal microscopy. In: Buszczak M (ed) Germline stem cells. Springer New York, New York, pp 85–91

    Chapter  Google Scholar 

  33. Thompson L, Randolph K, Norvell A (2015) Basic techniques in Drosophila ovary preparation. In: Bratu DP, McNeil GP (eds) Drosophila oogenesis. Springer New York, New York, pp 21–28

    Chapter  Google Scholar 

  34. Wong LC, Schedl P (2006) Dissection of Drosophila ovaries. J Vis Exp 52. https://doi.org/10.3791/52-v

  35. Zimmerman SG, Peters NC, Altaras AE, Berg CA (2013) Optimized RNA ISH, RNA FISH and protein-RNA double labeling (IF/FISH) in Drosophila ovaries. Nat Protoc 8:2158–2179. https://doi.org/10.1038/nprot.2013.136

    Article  CAS  Google Scholar 

  36. Hsu H-J, Drummond-Barbosa D (2017) A visual screen for diet-regulated proteins in the Drosophila ovary using GFP protein trap lines. Gene Expr Patterns 23–24:13–21. https://doi.org/10.1016/j.gep.2017.01.001

    Article  CAS  Google Scholar 

  37. Buszczak M, Paterno S, Lighthouse D et al (2007) The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175:1505–1531. https://doi.org/10.1534/genetics.106.065961

    Article  CAS  Google Scholar 

  38. Morin X, Daneman R, Zavortink M, Chia W (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci 98:15050–15055. https://doi.org/10.1073/pnas.261408198

    Article  CAS  Google Scholar 

  39. Quiñones-Coello AT, Petrella LN, Ayers K et al (2007) Exploring strategies for protein trapping in Drosophila. Genetics 175:1089–1104. https://doi.org/10.1534/genetics.106.065995

    Article  CAS  Google Scholar 

  40. Rørth P (1998) Gal4 in the Drosophila female germline. Mech Dev 78:113–118. https://doi.org/10.1016/S0925-4773(98)00157-9

    Article  Google Scholar 

  41. He L, Wang X, Montell DJ (2011) Shining light on Drosophila oogenesis: live imaging of egg development. Curr Opin Genet Dev 21:612–619. https://doi.org/10.1016/j.gde.2011.08.011

    Article  CAS  Google Scholar 

  42. Pokrywka NJ (2013) Live imaging of GFP-labeled proteins in Drosophila oocytes. J Vis Exp:50044. https://doi.org/10.3791/50044

Download references

Acknowledgments

The author thanks Olivier Devergne, Makayla Gomperts, Julia Wittes, and McKenzie Young for their contributions to this protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Merkle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Merkle, J.A. (2023). Dissection, Fixation, and Standard Staining of Adult Drosophila Ovaries. In: Giedt, M.S., Tootle, T.L. (eds) Drosophila Oogenesis. Methods in Molecular Biology, vol 2626. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2970-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2970-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2969-7

  • Online ISBN: 978-1-0716-2970-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics