Skip to main content

Genomic Strategies in Mitochondrial Diagnostics

  • Protocol
  • First Online:
Mitochondrial DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2615))

Abstract

Pathogenic variants in both mitochondrial and nuclear genes contribute to the clinical and genetic heterogeneity of mitochondrial diseases. There are now pathogenic variants in over 300 nuclear genes linked to human mitochondrial diseases. Nonetheless, diagnosing mitochondrial disease with a genetic outcome remains challenging. However, there are now many strategies that help us to pinpoint causative variants in patients with mitochondrial disease. This chapter describes some of the approaches and recent advancements in gene/variant prioritization using whole-exome sequencing (WES).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stenton SL, Prokisch H (2018) Advancing genomic approaches to the molecular diagnosis of mitochondrial disease. Essays Biochem 62(3):399–408

    Article  PubMed  Google Scholar 

  2. Stenton SL, Shimura M, Piekutowska-Abramczuk D, Freisinger P, Distelmaier F, Mayr JA et al (2021) Diagnosing pediatric mitochondrial disease: lessons from 2,000 exomes. medRxiv

    Google Scholar 

  3. Alston CL, Stenton SL, Hudson G, Prokisch H, Taylor RW (2021) The genetics of mitochondrial disease: dissecting mitochondrial pathology using multi-omic pipelines. J Pathol 254(4):430–442

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yépez VA, Gusic M, Kopajtich R, Mertes C, Smith NH, Alston CL et al (2021) Clinical implementation of RNA sequencing for Mendelian disease diagnostics. medRxiv

    Google Scholar 

  5. Kopajtich R, Smirnov D, Stenton SL, Loipfinger S, Meng C, Scheller IF et al (2021) Integration of proteomics with genomics and transcriptomics increases the diagnostic rate of Mendelian disorders. medRxiv

    Google Scholar 

  6. Thompson K, Collier JJ, Glasgow RIC, Robertson FM, Pyle A, Blakely EL et al (2020) Recent advances in understanding the molecular genetic basis of mitochondrial disease. J Inherit Metab Dis 43(1):36–50

    Article  PubMed  Google Scholar 

  7. Schwarze K, Buchanan J, Taylor JC, Wordsworth S (2018) Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med 20(10):1122–1130

    Article  PubMed  Google Scholar 

  8. Fang H, Wu Y, Narzisi G, O'Rawe JA, Barron LT, Rosenbaum J et al (2014) Reducing INDEL calling errors in whole genome and exome sequencing data. Genome Med 6(10):89

    Article  PubMed  PubMed Central  Google Scholar 

  9. Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331(6158):717–719

    Article  CAS  PubMed  Google Scholar 

  10. Grady JP, Pickett SJ, Ng YS, Alston CL, Blakely EL, Hardy SA et al (2018) mtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease. EMBO Mol Med 10(6)

    Google Scholar 

  11. Hamzeh AR, Andrews TD, Field MA (2021) Detecting causal variants in Mendelian disorders using whole-genome sequencing. Methods Mol Biol 2243:1–25

    Article  PubMed  Google Scholar 

  12. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA et al (2017) Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv

    Google Scholar 

  13. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, Consortium WGS et al (2014) Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet 46(8):912–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M et al (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46(W1):W537–WW44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164

    Article  PubMed  PubMed Central  Google Scholar 

  16. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A et al (2016) The ensembl variant effect predictor. Genome Biol 17(1):122

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92

    Article  CAS  PubMed  Google Scholar 

  18. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581(7809):434–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M (2019) CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47(D1):D886–DD94

    Article  CAS  PubMed  Google Scholar 

  20. Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ et al (2021) MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res 49(D1):D1541–D15D7

    Article  CAS  PubMed  Google Scholar 

  21. Ellard S, Baple E, Callaway A, Berry I, Forrester N, Turnbull C et al (2020) ACGS best practice guidelines for variant classification in rare disease 2020. Association for Clinical Genomic Science

    Google Scholar 

  22. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424

    Article  PubMed  PubMed Central  Google Scholar 

  23. Van Bergen NJ, Guo Y, Rankin J, Paczia N, Becker-Kettern J, Kremer LS et al (2019) NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses. Brain 142(1):50–58

    Article  PubMed  Google Scholar 

  24. Wingett SW, Andrews S (2018) FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res 7:1338

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang F, Flickinger M, Taliun SAG, In PPGC, Abecasis GR, Scott LJ et al (2020) Ancestry-agnostic estimation of DNA sample contamination from sequence reads. Genome Res 30(2):185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tan A, Abecasis GR, Kang HM (2015) Unified representation of genetic variants. Bioinformatics 31(13):2202–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC (2016) SIFT missense predictions for genomes. Nat Protoc 11(1):1–9

    Article  CAS  PubMed  Google Scholar 

  29. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S et al (2016) REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 99(4):877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tian Y, Pesaran T, Chamberlin A, Fenwick RB, Li S, Gau CL et al (2019) REVEL and BayesDel outperform other in silico meta-predictors for clinical variant classification. Sci Rep 9(1):12752

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fadista J, Oskolkov N, Hansson O, Groop L (2017) LoFtool: a gene intolerance score based on loss-of-function variants in 60 706 individuals. Bioinformatics 33(4):471–474

    Article  CAS  PubMed  Google Scholar 

  34. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S et al (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 54:1 30 1–1 3

    Google Scholar 

  35. Amberger JS, Bocchini CA, Scott AF, Hamosh A (2019) OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res 47(D1):D1038–D1D43

    Article  CAS  PubMed  Google Scholar 

  36. Chunn LM, Nefcy DC, Scouten RW, Tarpey RP, Chauhan G, Lim MS et al (2020) Mastermind: a comprehensive genomic association search engine for empirical evidence curation and genetic variant interpretation. Front Genet 11:577152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pinero J, Ramirez-Anguita JM, Sauch-Pitarch J, Ronzano F, Centeno E, Sanz F et al (2020) The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 48(D1):D845–DD55

    CAS  PubMed  Google Scholar 

  38. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S et al (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44(D1):D862–D868

    Article  CAS  PubMed  Google Scholar 

  39. Harrison SM, Riggs ER, Maglott DR, Lee JM, Azzariti DR, Niehaus A et al (2016) Using ClinVar as a resource to support variant interpretation. Curr Protoc Hum Genet 89:8 16 1–8 8 23

    PubMed  Google Scholar 

  40. Pei S, Liu T, Ren X, Li W, Chen C, Xie Z (2021) Benchmarking variant callers in next-generation and third-generation sequencing analysis. Brief Bioinform 22(3):bbaa148

    Article  PubMed  Google Scholar 

  41. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zeng Z, Bromberg Y (2019) Predicting functional effects of synonymous variants: a systematic review and perspectives. Front Genet 10:914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pyle A, Nightingale HJ, Griffin H, Abicht A, Kirschner J, Baric I et al (2015) Respiratory chain deficiency in nonmitochondrial disease. Neurol Genet 1(1):e6

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kemp JP, Smith PM, Pyle A, Neeve VC, Tuppen HA, Schara U et al (2011) Nuclear factors involved in mitochondrial translation cause a subgroup of combined respiratory chain deficiency. Brain 134(Pt 1):183–195

    Article  PubMed  Google Scholar 

  45. Lieber DS, Calvo SE, Shanahan K, Slate NG, Liu S, Hershman SG et al (2013) Targeted exome sequencing of suspected mitochondrial disorders. Neurology 80(19):1762–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taylor RW, Pyle A, Griffin H, Blakely EL, Duff J, He L et al (2014) Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312(1):68–77

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hengel H, Hannan SB, Dyack S, MacKay SB, Schatz U, Fleger M et al (2021) Bi-allelic loss-of-function variants in BCAS3 cause a syndromic neurodevelopmental disorder. Am J Hum Genet 108(6):1069–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in our laboratories is supported by the Wellcome Centre for Mitochondrial Research (203105/Z/16/Z), the Medical Research Council (MRC) International Centre for Genomic Medicine in Neuromuscular Disease (MR/S005021/1), the National Institute of Health Research (NIHR) Biomedical Research Centre in Age and Age Related Diseases award to the Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation, the Lily Foundation, the Pathology Society and the NHS Highly Specialised Service for Rare Mitochondrial Disorders. CLA is supported by the National Institute for Health Research (NIHR) Post-Doctoral Fellowship (PDF-2018-11-ST2-021). Figure 1 was created with BioRender.com. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Pyle .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary File 1

Genomic coordinates of Mitocarta coding regions in IntervalList format (ZIP 66.5 kb)

Supplementary File 2

Ensembl Gene IDs for Mitocarta genes (CSV 27.2 kb)

Supplementary File 3

Commands used in this chapter, provided in .txt format (TXT 9.65 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Deen, D., Alston, C.L., Hudson, G., Taylor, R.W., Pyle, A. (2023). Genomic Strategies in Mitochondrial Diagnostics. In: Nicholls, T.J., Uhler, J.P., Falkenberg, M. (eds) Mitochondrial DNA. Methods in Molecular Biology, vol 2615. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2922-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2922-2_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2921-5

  • Online ISBN: 978-1-0716-2922-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics