Skip to main content

Detecting Causal Variants in Mendelian Disorders Using Whole-Genome Sequencing

  • Protocol
  • First Online:
Deep Sequencing Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2243))

Abstract

Increasingly affordable sequencing technologies are revolutionizing the field of genomic medicine. It is now feasible to interrogate all major classes of variation in an individual across the entire genome for less than $1000 USD. While the generation of patient sequence information using these technologies has become routine, the analysis and interpretation of this data remains the greatest obstacle to widespread clinical implementation. This chapter summarizes the steps to identify, annotate, and prioritize variant information required for clinical report generation. We discuss methods to detect each variant class and describe strategies to increase the likelihood of detecting causal variant(s) in Mendelian disease. Lastly, we describe a sample workflow for synthesizing large amount of genetic information into concise clinical reports.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taupin D, Lam W, Rangiah D, McCallum L, Whittle B, Zhang Y, Andrews D, Field M, Goodnow CC, Cook MC (2015) A deleterious RNF43 germline mutation in a severely affected serrated polyposis kindred. Hum Genome Var 2:15013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dunkerton S, Field M, Cho V, Bertram E, Whittle B, Groves A, Goel H (2015) A de novo mutation in KMT2A (MLL) in monozygotic twins with Wiedemann-Steiner syndrome. Am J Med Genet A 167A(9):2182-2187. https://doi.org/10.1002/ajmg.a.37130

  3. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30(9):418–426. https://doi.org/10.1016/j.tig.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  4. Johar AS, Mastronardi C, Rojas-Villarraga A, Patel HR, Chuah A, Peng K, Higgins A, Milburn P, Palmer S, Silva-Lara MF, Velez JI, Andrews D, Field M, Huttley G, Goodnow C, Anaya JM, Arcos-Burgos M (2015) Novel and rare functional genomic variants in multiple autoimmune syndrome and Sjogren’s syndrome. J Transl Med 13:173. https://doi.org/10.1186/s12967-015-0525-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, Krabichler B, Speicher MR, Zschocke J, Trajanoski Z (2014) A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform 15(2):256–278. https://doi.org/10.1093/bib/bbs086

    Article  PubMed  Google Scholar 

  6. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7(2):e30619. https://doi.org/10.1371/journal.pone.0030619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  11. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36. https://doi.org/10.1186/gb-2013-14-4-r36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lappalainen T, Scott AJ, Brandt M, Hall IM (2019) Genomic analysis in the age of human genome sequencing. Cell 177(1):70–84. https://doi.org/10.1016/j.cell.2019.02.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cantarel BL, Weaver D, McNeill N, Zhang J, Mackey AJ, Reese J (2014) BAYSIC: a Bayesian method for combining sets of genome variants with improved specificity and sensitivity. BMC Bioinformatics 15:104. https://doi.org/10.1186/1471-2105-15-104

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sandmann S, Karimi M, de Graaf AO, Rohde C, Gollner S, Varghese J, Ernsting J, Walldin G, van der Reijden BA, Muller-Tidow C, Malcovati L, Hellstrom-Lindberg E, Jansen JH, Dugas M (2018) appreci8: a pipeline for precise variant calling integrating 8 tools. Bioinformatics 34(24):4205–4212. https://doi.org/10.1093/bioinformatics/bty518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andrews TD, Jeelall Y, Talaulikar D, Goodnow CC, Field MA (2016) DeepSNVMiner: a sequence analysis tool to detect emergent, rare mutations in subsets of cell populations. PeerJ 4:e2074. https://doi.org/10.7717/peerj.2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu C, Gu X, Padmanabhan R, Wu Z, Peng Q, DiCarlo J, Wang Y (2019) smCounter2: an accurate low-frequency variant caller for targeted sequencing data with unique molecular identifiers. Bioinformatics 35(8):1299–1309. https://doi.org/10.1093/bioinformatics/bty790

    Article  CAS  PubMed  Google Scholar 

  18. Chen J, Li X, Zhong H, Meng Y, Du H (2019) Systematic comparison of germline variant calling pipelines cross multiple next-generation sequencers. Sci Rep 9(1):9345. https://doi.org/10.1038/s41598-019-45835-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abyzov A, Li S, Kim DR, Mohiyuddin M, Stutz AM, Parrish NF, Mu XJ, Clark W, Chen K, Hurles M, Korbel JO, Lam HY, Lee C, Gerstein MB (2015) Analysis of deletion breakpoints from 1,092 humans reveals details of mutation mechanisms. Nat Commun 6:7256. https://doi.org/10.1038/ncomms8256

    Article  CAS  PubMed  Google Scholar 

  20. Monlong J, Cossette P, Meloche C, Rouleau G, Girard SL, Bourque G (2018) Human copy number variants are enriched in regions of low mappability. Nucleic Acids Res 46(14):7236–7249. https://doi.org/10.1093/nar/gky538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abyzov A, Urban AE, Snyder M, Gerstein M (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21(6):974–984. https://doi.org/10.1101/gr.114876.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cameron DL, Schroder J, Penington JS, Do H, Molania R, Dobrovic A, Speed TP, Papenfuss AT (2017) GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res 27(12):2050–2060. https://doi.org/10.1101/gr.222109.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quinlan AR, Clark RA, Sokolova S, Leibowitz ML, Zhang Y, Hurles ME, Mell JC, Hall IM (2010) Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome. Genome Res 20(5):623–635. https://doi.org/10.1101/gr.102970.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Mullighan CG, Easton J, Roberts S, Heatley SL, Ma J, Rusch MC, Chen K, Harris CC, Ding L, Holmfeldt L, Payne-Turner D, Fan X, Wei L, Zhao D, Obenauer JC, Naeve C, Mardis ER, Wilson RK, Downing JR, Zhang J (2011) CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat Methods 8(8):652–654. https://doi.org/10.1038/nmeth.1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y (2019) Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol 20(1):117. https://doi.org/10.1186/s13059-019-1720-5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K, Jun G, Fritz MH, Konkel MK, Malhotra A, Stutz AM, Shi X, Casale FP, Chen J, Hormozdiari F, Dayama G, Chen K, Malig M, Chaisson MJP, Walter K, Meiers S, Kashin S, Garrison E, Auton A, Lam HYK, Mu XJ, Alkan C, Antaki D, Bae T, Cerveira E, Chines P, Chong Z, Clarke L, Dal E, Ding L, Emery S, Fan X, Gujral M, Kahveci F, Kidd JM, Kong Y, Lameijer EW, McCarthy S, Flicek P, Gibbs RA, Marth G, Mason CE, Menelaou A, Muzny DM, Nelson BJ, Noor A, Parrish NF, Pendleton M, Quitadamo A, Raeder B, Schadt EE, Romanovitch M, Schlattl A, Sebra R, Shabalin AA, Untergasser A, Walker JA, Wang M, Yu F, Zhang C, Zhang J, Zheng-Bradley X, Zhou W, Zichner T, Sebat J, Batzer MA, McCarroll SA, Genomes Project C, Mills RE, Gerstein MB, Bashir A, Stegle O, Devine SE, Lee C, Eichler EE, Korbel JO (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526(7571):75–81. https://doi.org/10.1038/nature15394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, Krumm N, Huddleston J, Coe BP, Baker C, Nordenfelt S, Bamshad M, Jorde LB, Posukh OL, Sahakyan H, Watkins WS, Yepiskoposyan L, Abdullah MS, Bravi CM, Capelli C, Hervig T, Wee JT, Tyler-Smith C, van Driem G, Romero IG, Jha AR, Karachanak-Yankova S, Toncheva D, Comas D, Henn B, Kivisild T, Ruiz-Linares A, Sajantila A, Metspalu E, Parik J, Villems R, Starikovskaya EB, Ayodo G, Beall CM, Di Rienzo A, Hammer MF, Khusainova R, Khusnutdinova E, Klitz W, Winkler C, Labuda D, Metspalu M, Tishkoff SA, Dryomov S, Sukernik R, Patterson N, Reich D, Eichler EE (2015) Global diversity, population stratification, and selection of human copy-number variation. Science 349(6253):aab3761. https://doi.org/10.1126/science.aab3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Novak P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29(6):792–793. https://doi.org/10.1093/bioinformatics/btt054

    Article  CAS  PubMed  Google Scholar 

  29. Dashnow H, Lek M, Phipson B, Halman A, Sadedin S, Lonsdale A, Davis M, Lamont P, Clayton JS, Laing NG, MacArthur DG, Oshlack A (2018) STRetch: detecting and discovering pathogenic short tandem repeat expansions. Genome Biol 19(1):121. https://doi.org/10.1186/s13059-018-1505-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pruitt KD, Maglott DR (2001) RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res 29(1):137–140. https://doi.org/10.1093/nar/29.1.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F (2010) Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26(16):2069–2070. https://doi.org/10.1093/bioinformatics/btq330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anna A, Monika G (2018) Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genet 59(3):253–268. https://doi.org/10.1007/s13353-018-0444-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miosge LA, Field MA, Sontani Y, Cho V, Johnson S, Palkova A, Balakishnan B, Liang R, Zhang Y, Lyon S, Beutler B, Whittle B, Bertram EM, Enders A, Goodnow CC, Andrews TD (2015) Comparison of predicted and actual consequences of missense mutations. Proc Natl Acad Sci USA 112(37):E5189-E5198. https://doi.org/10.1073/pnas.1511585112

  35. Johar AS, Anaya JM, Andrews D, Patel HR, Field M, Goodnow C, Arcos-Burgos M (2014) Candidate gene discovery in autoimmunity by using extreme phenotypes, next generation sequencing and whole exome capture. Autoimmun Rev 14(3):204-209. https://doi.org/10.1016/j.autrev.2014.10.021

  36. Al Sukaiti N, AbdelRahman K, AlShekaili J, Al Oraimi S, Al Sinani A, Al Rahbi N, Cho V, Field M, Cook MC (2017) Agammaglobulinaemia despite terminal B-cell differentiation in a patient with a novel LRBA mutation. Clin Transl Immunol 6(5):e144

    Article  Google Scholar 

  37. Cardinez C, Miraghazadeh B, Tanita K, da Silva E, Hoshino A, Okada S, Chand R, Asano T, Tsumura M, Yoshida K, Ohnishi H, Kato Z, Yamazaki M, Okuno Y, Miyano S, Kojima S, Ogawa S, Andrews TD, Field MA, Burgio G, Morio T, Vinuesa CG, Kanegane H, Cook MC (2018) Gain-of-function IKBKB mutation causes human combined immune deficiency. J Exp Med. https://doi.org/10.1084/jem.20180639

  38. Jiang SH, Athanasopoulos V, Ellyard JI, Chuah A, Cappello J, Cook A, Prabhu SB, Cardenas J, Gu J, Stanley M, Roco JA, Papa I, Yabas M, Walters GD, Burgio G, McKeon K, Byers JM, Burrin C, Enders A, Miosge LA, Canete PF, Jelusic M, Tasic V, Lungu AC, Alexander SI, Kitching AR, Fulcher DA, Shen N, Arsov T, Gatenby PA, Babon JJ, Mallon DF, de Lucas CC, Stone EA, Wu P, Field MA, Andrews TD, Cho E, Pascual V, Cook MC, Vinuesa CG (2019) Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nat Commun 10(1):2201. https://doi.org/10.1038/s41467-019-10242-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kramer A, Green J, Pollard J Jr, Tugendreich S (2014) Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30(4):523–530. https://doi.org/10.1093/bioinformatics/btt703

    Article  CAS  PubMed  Google Scholar 

  40. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  Google Scholar 

  41. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42(1):30–35. https://doi.org/10.1038/ng.499

    Article  CAS  PubMed  Google Scholar 

  42. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z, Hardison M, Person R, Bekheirnia MR, Leduc MS, Kirby A, Pham P, Scull J, Wang M, Ding Y, Plon SE, Lupski JR, Beaudet AL, Gibbs RA, Eng CM (2013) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 369(16):1502–1511. https://doi.org/10.1056/NEJMoa1306555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li MX, Gui HS, Kwan JS, Bao SY, Sham PC (2012) A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases. Nucleic Acids Res 40(7):e53. https://doi.org/10.1093/nar/gkr1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kamphans T, Sabri P, Zhu N, Heinrich V, Mundlos S, Robinson PN, Parkhomchuk D, Krawitz PM (2013) Filtering for compound heterozygous sequence variants in non-consanguineous pedigrees. PLoS One 8(8):e70151. https://doi.org/10.1371/journal.pone.0070151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46(3):310–315. https://doi.org/10.1038/ng.2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Paila U, Chapman BA, Kirchner R, Quinlan AR (2013) GEMINI: integrative exploration of genetic variation and genome annotations. PLoS Comput Biol 9(7):e1003153. https://doi.org/10.1371/journal.pcbi.1003153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Field MA, Cho V, Cook MC, Enders A, Vinuesa C, Whittle B, Andrews TD, Goodnow CC (2015) Reducing the search space for causal genetic variants with VASP: Variant Analysis of Sequenced Pedigrees. Bioinformatics 31(14):2377-2379. https://doi.org/10.1093/bioinformatics/btv135

  48. Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA (2012) Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A 109(36):14508–14513. https://doi.org/10.1073/pnas.1208715109

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, Foley AR, Bolduc V, Waddell LB, Sandaradura SA, O’Grady GL, Estrella E, Reddy HM, Zhao F, Weisburd B, Karczewski KJ, O'Donnell-Luria AH, Birnbaum D, Sarkozy A, Hu Y, Gonorazky H, Claeys K, Joshi H, Bournazos A, Oates EC, Ghaoui R, Davis MR, Laing NG, Topf A, Genotype-Tissue Expression C, Kang PB, Beggs AH, North KN, Straub V, Dowling JJ, Muntoni F, Clarke NF, Cooper ST, Bonnemann CG, MacArthur DG (2017) Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med 9(386):eaal5209. https://doi.org/10.1126/scitranslmed.aal5209

  50. Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW (2016) Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet 17(5):257–271. https://doi.org/10.1038/nrg.2016.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Merker JD, Wenger AM, Sneddon T, Grove M, Zappala Z, Fresard L, Waggott D, Utiramerur S, Hou Y, Smith KS, Montgomery SB, Wheeler M, Buchan JG, Lambert CC, Eng KS, Hickey L, Korlach J, Ford J, Ashley EA (2018) Long-read genome sequencing identifies causal structural variation in a Mendelian disease. Genet Med 20(1):159–163. https://doi.org/10.1038/gim.2017.86

    Article  CAS  PubMed  Google Scholar 

  52. Field MA, Cho V, Andrews TD, Goodnow CC (2015) Reliably detecting clinically important variants requires both combined variant calls and optimized filtering strategies. PLoS One 10(11):e0143199. https://doi.org/10.1371/journal.pone.0143199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Waardenberg AJ, Field MA (2019). consensusDE: an R package for assessing consensus of multiple RNA-seq algorithms with RUV correction. PeerJ 7:e8206. https://doi.org/10.7717/peerj.8206

  54. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O'Donnell-Luria AH, Vallabh Minikel E, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Neale BM, Daly MJ, MacArthur DG (2019) Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv:531210. https://doi.org/10.1101/531210

  55. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42(Database issue):D980–D985. https://doi.org/10.1093/nar/gkt1113

    Article  CAS  PubMed  Google Scholar 

  56. Braschi B, Denny P, Gray K, Jones T, Seal R, Tweedie S, Yates B, Bruford E (2019) Genenames.org: the HGNC and VGNC resources in 2019. Nucleic Acids Res 47(D1):D786–D792. https://doi.org/10.1093/nar/gky930

    Article  CAS  PubMed  Google Scholar 

  57. UniProt C (2008) The universal protein resource (UniProt). Nucleic Acids Res 36(Database issue):D190–D195. https://doi.org/10.1093/nar/gkm895

    Article  CAS  Google Scholar 

  58. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33(Database issue):D514–D517. https://doi.org/10.1093/nar/gki033

    Article  CAS  PubMed  Google Scholar 

  59. Mungall CJ, McMurry JA, Kohler S, Balhoff JP, Borromeo C, Brush M, Carbon S, Conlin T, Dunn N, Engelstad M, Foster E, Gourdine JP, Jacobsen JO, Keith D, Laraway B, Lewis SE, NguyenXuan J, Shefchek K, Vasilevsky N, Yuan Z, Washington N, Hochheiser H, Groza T, Smedley D, Robinson PN, Haendel MA (2017) The Monarch initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res 45(D1):D712–D722. https://doi.org/10.1093/nar/gkw1128

    Article  CAS  PubMed  Google Scholar 

  60. Kohler S, Schulz MH, Krawitz P, Bauer S, Dolken S, Ott CE, Mundlos C, Horn D, Mundlos S, Robinson PN (2009) Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet 85(4):457–464. https://doi.org/10.1016/j.ajhg.2009.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN (2017) The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136(6):665–677. https://doi.org/10.1007/s00439-017-1779-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bragin E, Chatzimichali EA, Wright CF, Hurles ME, Firth HV, Bevan AP, Swaminathan GJ (2014) DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res 42(Database issue):D993–D1000. https://doi.org/10.1093/nar/gkt937

    Article  CAS  PubMed  Google Scholar 

  63. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19(6):607–614. https://doi.org/10.1002/humu.10081

    Article  CAS  PubMed  Google Scholar 

  64. Sarrauste de Menthiere C, Terriere S, Pugnere D, Ruiz M, Demaille J, Touitou I (2003) INFEVERS: the Registry for FMF and hereditary inflammatory disorders mutations. Nucleic Acids Res 31(1):282–285. https://doi.org/10.1093/nar/gkg031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT (2011) LOVD v.2.0: the next generation in gene variant databases. Hum Mutat 32(5):557–563. https://doi.org/10.1002/humu.21438

    Article  CAS  PubMed  Google Scholar 

  66. Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, Langley RJ, Zhang L, Lee CC, Schilkey FD, Sheth V, Woodward JE, Peckham HE, Schroth GP, Kim RW, Kingsmore SF (2011) Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med 3(65):65ra64. https://doi.org/10.1126/scitranslmed.3001756

    Article  CAS  Google Scholar 

  67. Dorschner MO, Amendola LM, Turner EH, Robertson PD, Shirts BH, Gallego CJ, Bennett RL, Jones KL, Tokita MJ, Bennett JT, Kim JH, Rosenthal EA, Kim DS, National Heart L, Blood Institute Grand Opportunity Exome Sequencing P, Tabor HK, Bamshad MJ, Motulsky AG, Scott CR, Pritchard CC, Walsh T, Burke W, Raskind WH, Byers P, Hisama FM, Nickerson DA, Jarvik GP (2013) Actionable, pathogenic incidental findings in 1,000 participants’ exomes. Am J Hum Genet 93(4):631–640. https://doi.org/10.1016/j.ajhg.2013.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lappalainen I, Lopez J, Skipper L, Hefferon T, Spalding JD, Garner J, Chen C, Maguire M, Corbett M, Zhou G, Paschall J, Ananiev V, Flicek P, Church DM (2013) DbVar and DGVa: public archives for genomic structural variation. Nucleic Acids Res 41(Database issue):D936–D941. https://doi.org/10.1093/nar/gks1213

    Article  CAS  PubMed  Google Scholar 

  70. MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW (2014) The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res 42(Database issue):D986–D992. https://doi.org/10.1093/nar/gkt958

    Article  CAS  PubMed  Google Scholar 

  71. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393

    Article  CAS  Google Scholar 

  72. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, Massouras A (2019) VarSome: the human genomic variant search engine. Bioinformatics 35(11):1978–1980. https://doi.org/10.1093/bioinformatics/bty897

    Article  CAS  PubMed  Google Scholar 

  73. Wang J, Al-Ouran R, Hu Y, Kim SY, Wan YW, Wangler MF, Yamamoto S, Chao HT, Comjean A, Mohr SE, Udn PN, Liu Z, Bellen HJ (2017) MARRVEL: integration of human and model organism genetic resources to facilitate functional annotation of the human genome. Am J Hum Genet 100(6):843–853. https://doi.org/10.1016/j.ajhg.2017.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nykamp K, Anderson M, Powers M, Garcia J, Herrera B, Ho YY, Kobayashi Y, Patil N, Thusberg J, Westbrook M, Invitae Clinical Genomics G, Topper S (2017) Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med 19(10):1105–1117. https://doi.org/10.1038/gim.2017.37

    Article  PubMed  PubMed Central  Google Scholar 

  76. Field MA, Burgio G, Chuah A, Al Shekaili J, Hassan B, Al Sukaiti N, Foote SJ, Cook MC, Andrews TD (2019) Recurrent miscalling of missense variation from short-read genome sequence data. BMC Genomics 20(Suppl 8):546. https://doi.org/10.1186/s12864-019-5863-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, Herman GE, Hufnagel SB, Klein TE, Korf BR, McKelvey KD, Ormond KE, Richards CS, Vlangos CN, Watson M, Martin CL, Miller DT (2017) Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 19(2):249–255. https://doi.org/10.1038/gim.2016.190

    Article  PubMed  Google Scholar 

  78. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249. https://doi.org/10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40(Web Server issue):W452–W457. https://doi.org/10.1093/nar/gks539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Consortium GT (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45(6):580–585. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  82. Gelb BD, Cave H, Dillon MW, Gripp KW, Lee JA, Mason-Suares H, Rauen KA, Williams B, Zenker M, Vincent LM, ClinGen RWG (2018) ClinGen’s RASopathy Expert Panel consensus methods for variant interpretation. Genet Med 20(11):1334–1345. https://doi.org/10.1038/gim.2018.3

    Article  PubMed  PubMed Central  Google Scholar 

  83. Romanet P, Odou MF, North MO, Saveanu A, Coppin L, Pasmant E, Mohamed A, Goudet P, Borson-Chazot F, Calender A, Beroud C, Levy N, Giraud S, Barlier A (2019) Proposition of adjustments to the ACMG-AMP framework for the interpretation of MEN1 missense variants. Hum Mutat 40(6):661–674. https://doi.org/10.1002/humu.23746

    Article  CAS  PubMed  Google Scholar 

  84. Kelly MA, Caleshu C, Morales A, Buchan J, Wolf Z, Harrison SM, Cook S, Dillon MW, Garcia J, Haverfield E, Jongbloed JDH, Macaya D, Manrai A, Orland K, Richard G, Spoonamore K, Thomas M, Thomson K, Vincent LM, Walsh R, Watkins H, Whiffin N, Ingles J, van Tintelen JP, Semsarian C, Ware JS, Hershberger R, Funke B (2018) Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genet Med 20(3):351–359. https://doi.org/10.1038/gim.2017.218

    Article  PubMed  PubMed Central  Google Scholar 

  85. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27(21):2987–2993. https://doi.org/10.1093/bioinformatics/btr509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM, Wilson RK, Ding L (2009) VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25(17):2283–2285. https://doi.org/10.1093/bioinformatics/btp373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, Consortium WGS, Wilkie AOM, McVean G, Lunter G (2014) Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet 46 (8):912–918. https://doi.org/10.1038/ng.3036

  88. Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Kallberg M, Chen X, Kim Y, Beyter D, Krusche P, Saunders CT (2018) Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods 15(8):591–594. https://doi.org/10.1038/s41592-018-0051-x

    Article  CAS  PubMed  Google Scholar 

  89. Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, Johnson J, Dougherty B, Barrett JC, Dry JR (2016) VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res 44(11):e108. https://doi.org/10.1093/nar/gkw227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wilm A, Aw PP, Bertrand D, Yeo GH, Ong SH, Wong CH, Khor CC, Petric R, Hibberd ML, Nagarajan N (2012) LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 40(22):11189–11201. https://doi.org/10.1093/nar/gks918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28(18):i333–i339. https://doi.org/10.1093/bioinformatics/bts378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Layer RM, Chiang C, Quinlan AR, Hall IM (2014) LUMPY: a probabilistic framework for structural variant discovery. Genome Biol 15(6):R84. https://doi.org/10.1186/gb-2014-15-6-r84

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kallberg M, Cox AJ, Kruglyak S, Saunders CT (2016) Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32(8):1220–1222. https://doi.org/10.1093/bioinformatics/btv710

    Article  CAS  PubMed  Google Scholar 

  94. Marschall T, Costa IG, Canzar S, Bauer M, Klau GW, Schliep A, Schonhuth A (2012) CLEVER: clique-enumerating variant finder. Bioinformatics 28(22):2875–2882. https://doi.org/10.1093/bioinformatics/bts566

    Article  CAS  PubMed  Google Scholar 

  95. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis ER (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6(9):677–681. https://doi.org/10.1038/nmeth.1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jiang Y, Wang Y, Brudno M (2012) PRISM: pair-read informed split-read mapping for base-pair level detection of insertion, deletion and structural variants. Bioinformatics 28(20):2576–2583. https://doi.org/10.1093/bioinformatics/bts484

    Article  CAS  PubMed  Google Scholar 

  97. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25(21):2865–2871. https://doi.org/10.1093/bioinformatics/btp394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dolzhenko E, van Vugt J, Shaw RJ, Bekritsky MA, van Blitterswijk M, Narzisi G, Ajay SS, Rajan V, Lajoie BR, Johnson NH, Kingsbury Z, Humphray SJ, Schellevis RD, Brands WJ, Baker M, Rademakers R, Kooyman M, Tazelaar GHP, van Es MA, McLaughlin R, Sproviero W, Shatunov A, Jones A, Al Khleifat A, Pittman A, Morgan S, Hardiman O, Al-Chalabi A, Shaw C, Smith B, Neo EJ, Morrison K, Shaw PJ, Reeves C, Winterkorn L, Wexler NS, Group US-VCR, Housman DE, Ng CW, Li AL, Taft RJ, van den Berg LH, Bentley DR, Veldink JH, Eberle MA (2017) Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res 27(11):1895–1903. https://doi.org/10.1101/gr.225672.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Willems T, Zielinski D, Yuan J, Gordon A, Gymrek M, Erlich Y (2017) Genome-wide profiling of heritable and de novo STR variations. Nat Methods 14(6):590–592. https://doi.org/10.1038/nmeth.4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tankard RM, Bennett MF, Degorski P, Delatycki MB, Lockhart PJ, Bahlo M (2018) Detecting expansions of tandem repeats in cohorts sequenced with short-read sequencing data. Am J Hum Genet 103(6):858–873. https://doi.org/10.1016/j.ajhg.2018.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tang H, Kirkness EF, Lippert C, Biggs WH, Fabani M, Guzman E, Ramakrishnan S, Lavrenko V, Kakaradov B, Hou C, Hicks B, Heckerman D, Och FJ, Caskey CT, Venter JC, Telenti A (2017) Profiling of short-tandem-repeat disease alleles in 12,632 human whole genomes. Am J Hum Genet 101(5):700–715. https://doi.org/10.1016/j.ajhg.2017.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580. https://doi.org/10.1093/nar/27.2.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mayer C, Leese F, Tollrian R (2010) Genome-wide analysis of tandem repeats in Daphnia pulex—a comparative approach. BMC Genomics 11:277. https://doi.org/10.1186/1471-2164-11-277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Keane TM, Wong K, Adams DJ (2013) RetroSeq: transposable element discovery from next-generation sequencing data. Bioinformatics 29(3):389–390. https://doi.org/10.1093/bioinformatics/bts697

    Article  CAS  PubMed  Google Scholar 

  105. Wu J, Lee WP, Ward A, Walker JA, Konkel MK, Batzer MA, Marth GT (2014) Tangram: a comprehensive toolbox for mobile element insertion detection. BMC Genomics 15:795. https://doi.org/10.1186/1471-2164-15-795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Desvignes JP, Bartoli M, Delague V, Krahn M, Miltgen M, Beroud C, Salgado D (2018) VarAFT: a variant annotation and filtration system for human next generation sequencing data. Nucleic Acids Res 46(W1):W545–W553. https://doi.org/10.1093/nar/gky471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu X, Jian X, Boerwinkle E (2011) dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat 32(8):894–899. https://doi.org/10.1002/humu.21517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92. https://doi.org/10.4161/fly.19695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt A. Field .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hamzeh, A.R., Andrews, T.D., Field, M.A. (2021). Detecting Causal Variants in Mendelian Disorders Using Whole-Genome Sequencing. In: Shomron, N. (eds) Deep Sequencing Data Analysis. Methods in Molecular Biology, vol 2243. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1103-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1103-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1102-9

  • Online ISBN: 978-1-0716-1103-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics