Skip to main content

ELISA-Based Biosensors

  • Protocol
  • First Online:
ELISA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2612))

Abstract

Enzyme-linked immunosorbent assay (ELISA) is by definition a biosensor. However, not all immuno-biosensors involve the use of enzymes, while other biosensors incorporate ELISA as a key signaling component. In this chapter, we review the role of ELISA in signal amplification, integration with microfluidic systems, digital labeling, and electrochemical detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhalla N, Pawan P, Formisano N, Estrela P (2016) Introduction to biosensors. Essays Biochem 60:1–8. https://doi.org/10.1042/EBC20150001

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sun S, Yang M, Kostov Y, Rasooly A (2010) ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection. Lab Chip 16:2093–2100. https://doi.org/10.1039/C003994B

    Article  Google Scholar 

  3. Thaitrong N, Charlermroj R, Himananto O et al (2013) Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens. PLoS One 8(12):e83231. https://doi.org/10.1371/journal.pone.0083231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tecan (2012) Application note: automating ELISAs on Tecan’s Freedom EVO® using Optimiser™ technology from Siloam Biosciences. Tecan, Männedorf

    Google Scholar 

  5. Kai J, Santiago N, Puntambekar A, et al (2011) The next generation microplate using power of microfluidics for femtogram/ml level sensitivity. 15th international conference on miniaturized systems for chemistry and life sciences, 2–6 October 2011, Seattle, WA, USA

    Google Scholar 

  6. Ghosh S, Aggarwal K, Vinitha TU et al (2020) A new microchannel capillary flow assay (MCFA) platform with lyophilized chemiluminescence reagents for a smartphone based POCT detecting malaria. Microsyst Nanoeng 6:5. https://doi.org/10.1038/s41378-019-0108-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matson RS (2013) Chapter 6: Protein microarray applications. In: Matson RS (ed) Applying genomic and proteomic microarray technology in drug discover, 2nd edn. CRC Press, Baco Raton, pp 224–225

    Chapter  Google Scholar 

  8. Paragas VB, Zhang Y-Z, Haugland RP, Singer VL (1997) The ELF-97 alkaline phosphatase substrate provides a bright, photostable, fluorescent signal amplification method for FISH. J Histochem Cytochem 45(3):345–357

    Article  CAS  PubMed  Google Scholar 

  9. Johnson I, Spence M, eds (2010) Chapter 6: Ultrasensitive detection technology, Section 6.3 phosphatase-mediated signal amplification techniques. In: The molecular probes handbook. A guide to fluorescent probes and labeling technologies, 11th edn. Life Technologies, Carlsbad

    Google Scholar 

  10. Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ (1989) Catalyzed reporter deposition, a novel method of signal amplification to immunoassays. J Immunol Methods 125:279–285

    Article  CAS  PubMed  Google Scholar 

  11. Faget L, Hanasko TS (2015) Chapter 16: Tyramide amplification for immunofluorescence enhancement. In: Hanasko R (ed) ELISA methods and protocols, Methods in molecular biology 1318, Springer protocols. Human Press, New York, pp 161–172

    Chapter  Google Scholar 

  12. Stack EC, Wang C, Roman KA, Hoyt CC (2014) Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of tyramide signal amplification, multispectral imaging, and multiplex analysis. Methods 70:46–58. https://doi.org/10.1016/j.ymeth.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  13. Aydin M, Herzig GPD, Jeong KC et al (2014) Rapid and sensitive detection of Escherichia coli O157:H7 in milk and ground beef using magnetic bead–based immunoassay coupled with tyramide signal amplification. J Food Prot 77(1):100–105. https://doi.org/10.4315/0362-028X.JFP-13-274

    Article  PubMed  Google Scholar 

  14. Walt DR (2013) Optical methods for single molecule detection and analysis. Anal Chem 85:1258–1263. https://doi.org/10.1021/ac3027178

    Article  CAS  PubMed  Google Scholar 

  15. Rissin DM, Walt DR (2006) Digital readout of target binding with attomole detection limits via enzyme amplification in femtoliter arrays. J Am Chem Soc 128:6286–6287. https://doi.org/10.1021/ja058425e

    Article  CAS  PubMed  Google Scholar 

  16. Rissin DM, Kan CW, Campbell TG et al (2010) Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 28(6):595–599. https://doi.org/10.1038/nbt.1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cohen L, Cui N, Cai Y et al (2020) Single molecule protein detection with attomolar sensitivity using droplet digital enzyme-linked immunosorbent assay. ACS Nano 14:9491–9501. https://doi.org/10.1021/acsnano.0c023789491

    Article  CAS  PubMed  Google Scholar 

  18. Akama K, Shirai K, Suzuki S (2016) Droplet-free digital enzyme-linked immunosorbent assay based on a tyramide signal amplification system. Anal Chem 88:7123–7129. https://doi.org/10.1021/acs.analchem.6b01148

    Article  CAS  PubMed  Google Scholar 

  19. Maley AM, Garden PM, Walt DR (2020) Simplified digital enzyme-linked immunosorbent assay using tyramide signal amplification and fibrin hydrogels. ACS Sens 5:3037–3042. https://doi.org/10.1021/acssensors.0c01661

    Article  CAS  PubMed  Google Scholar 

  20. Fu C, Jin S, Shi W et al (2018) Catalyzed deposition of signal reporter for highly sensitive surface-enhanced Raman spectroscopy immunoassay based on tyramine signal amplification strategy. Anal Chem 90:13159–13162. https://doi.org/10.1021/acs.analchem.8b02419

    Article  CAS  PubMed  Google Scholar 

  21. Song L, Lachno DR, Hanlon D et al (2021) A digital enzyme-linked immunosorbent assay for ultrasensitive measurement of amyloid-β 1–42 peptide in human plasma with utility for studies of Alzheimer’s disease therapeutics. Alzheimers Res Ther 8(58):1–15. https://doi.org/10.1186/s13195-016-0225-7

    Article  CAS  Google Scholar 

  22. Hu R, Sou K, Takeoka S (2020) A rapid and highly sensitive biomarker detection platform based on a temperature-responsive liposome-linked immunosorbent assay. Sci Rep 10(18086):1–11. https://doi.org/10.1038/s41598-020-75011-x

    Article  CAS  Google Scholar 

  23. Sou K, Chan LY, Arai S, Lee C-LK (2019) Highly cooperative fluorescence switching of self-assembled squaraine dye at tunable threshold temperatures using thermosensitive nanovesicles for optical sensing and imaging. Sci Rep 9(17991):1–12. https://doi.org/10.1038/s41598-019-54418-1

    Article  CAS  Google Scholar 

  24. Wujcik EK, Wei H, Zhang X et al (2014) Antibody nanosensors: a detailed review. RSC Adv 4:43725–43745

    Article  CAS  Google Scholar 

  25. Leva-Bueno J, Peyman SA, Millner PA (2020) A review on impedimetric immunosensors for pathogen and biomarker detection. Med Microbiol Immunol 209:343–362. https://doi.org/10.1007/s00430-020-00668-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mollarasouli F, Kurbanoglu S, Ozkan SA (2019) The role of electrochemical immunosensors in clinical analysis. Biosensors 9(86):1–19. https://doi.org/10.3390/bios9030086

    Article  CAS  Google Scholar 

  27. Kim S, Song H, Ahn H et al (2021) A review of advanced impedance biosensors with microfluidic chips for single-cell analysis. Biosensors 11(412):1–14. https://doi.org/10.3390/bios11110412

    Article  CAS  Google Scholar 

  28. Teeparuksapun K, Hedstrom M, Wong EY et al (2010) Ultrasensitive detection of HIV-1 p24 antigen using nanofunctionalized surfaces in a capacitive immunosensor. Anal Chem 82(20):8406–8411

    Article  CAS  PubMed  Google Scholar 

  29. Contreras-Naranjo JE, Oscar Aguilar O (2019) Suppressing non-specific binding of proteins onto electrode surfaces in the development of electrochemical immunosensors. Biosensors 9(15):1–23. https://doi.org/10.3390/bios9010015. www.mdpi.com/journal/biosensors

    Article  CAS  Google Scholar 

  30. Benkert A, Scheller F, Schossler W et al (2000) Development of a creatinine ELISA and an amperometric antibody-based creatinine sensor with a detection limit in the nanomolar range. Anal Chem 72(5):916–921

    Article  CAS  PubMed  Google Scholar 

  31. Martínez-García G, Sánchez-Tirado E, González-Cortés A et al (2018) Amperometric immunoassay for the obesity biomarker amylin using a screen-printed carbon electrode functionalized with an electropolymerized carboxylated polypyrrole. Microchim Acta 185(323):1–8. https://doi.org/10.1007/s00604-018-2863-x

    Article  CAS  Google Scholar 

  32. Miao W, Choi J-P, Bard AJ (2002) Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine) ruthenium (II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) system revisited-a new route involving TPrA cation radicals. J Am Chem Soc 124:14478–14485. https://doi.org/10.1021/ja027532v

    Article  CAS  PubMed  Google Scholar 

  33. Parveena S, Chena Y, Yuana Y et al (2021) Electrochemiluminescence of [Ru(bpy)3]2+/tripropylamine at glassy carbon, platinum, and palladium electrodes. Sens Actuators Rep 3(100062):1–6

    Google Scholar 

  34. Zanut A, Fiorani A, Canola S et al (2020) Insights into the mechanism of coreactant electrochemiluminescence facilitating enhanced bioanalytical performance. Nat Commun 11(2668):1–9. https://doi.org/10.1038/s41467-020-16476-2

    Article  CAS  Google Scholar 

  35. Zhang Z, Cong Y, Huang Y, Du X (2019) Nanomaterials-based electrochemical immunosensors. Micromachines 10(397):1–19. https://doi.org/10.3390/mi10060397

    Article  Google Scholar 

  36. Zhang Y, Zhang R, Yang X et al (2019) Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J Pharm Anal 9:9–19

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Matson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matson, R.S. (2023). ELISA-Based Biosensors. In: Matson, R.S. (eds) ELISA. Methods in Molecular Biology, vol 2612. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2903-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2903-1_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2902-4

  • Online ISBN: 978-1-0716-2903-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics