Skip to main content

Chromatin Immunoprecipitation Approach to Determine How PARP1 Domains Affect Binding Pattern to Chromatin

  • Protocol
  • First Online:
Poly(ADP-Ribose) Polymerase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2609))

  • 865 Accesses

Abstract

Poly(ADP-ribose) polymerase 1 (PARP1) is an enzyme involved in the regulation of different cellular mechanisms, ranging from DNA repair to regulation of gene expression. The different PARP1 domains have been shown to influence PARP1 binding pattern to chromatin. However, which loci bound by PARP1 are affected in the absence of a specific domain is not known. To determine the binding pattern of the different PARP1 domains, we used a ChIP-seq approach on different GFP-tagged versions of PARP1. Here, we described how to perform and analyze ChIP-seq performed with a GFP antibody in Drosophila melanogaster third instar larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342(Pt 2):249–268

    Article  Google Scholar 

  2. Ji Y, Tulin AV (2010) The roles of PARP1 in gene control and cell differentiation. Curr Opin Genet Dev 20(5):512–518

    Article  CAS  Google Scholar 

  3. Lodhi N, Kossenkov AV, Tulin AV (2014) Bookmarking promoters in mitotic chromatin: poly(ADP-ribose)polymerase-1 as an epigenetic mark. Nucleic Acids Res 42(11):7028–7038

    Article  CAS  Google Scholar 

  4. Ray Chaudhuri A, Nussenzweig A (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18(10):610–621

    Article  CAS  Google Scholar 

  5. Thomas C, Tulin AV (2013) Poly-ADP-ribose polymerase: machinery for nuclear processes. Mol Asp Med 34(6):1124–1137

    Article  CAS  Google Scholar 

  6. Tulin A, Chinenov Y, Spradling A (2003) Regulation of chromatin structure and gene activity by poly(ADP-ribose) polymerases. Curr Top Dev Biol 56:55–83

    Article  CAS  Google Scholar 

  7. Tulin A, Spradling A (2003) Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299(5606):560–562

    Article  CAS  Google Scholar 

  8. Weaver AN, Yang ES (2013) Beyond DNA repair: additional functions of PARP-1 in cancer. Front Oncol 3:290

    Article  Google Scholar 

  9. Buki KG, Bauer PI, Hakam A, Kun E (1995) Identification of domains of poly(ADP-ribose) polymerase for protein binding and self-association. J Biol Chem 270(7):3370–3377

    Article  CAS  Google Scholar 

  10. Kirsanov KI, Kotova E, Makhov P, Golovine K, Lesovaya EA, Kolenko VM et al (2014) Minor grove binding ligands disrupt PARP-1 activation pathways. Oncotarget 5(2):428–437

    Article  Google Scholar 

  11. Kotova E, Jarnik M, Tulin AV (2010) Uncoupling of the transactivation and transrepression functions of PARP1 protein. Proc Natl Acad Sci U S A 107(14):6406–6411

    Article  CAS  Google Scholar 

  12. Rudolph J, Mahadevan J, Dyer P, Luger K (2018) Poly(ADP-ribose) polymerase 1 searches DNA via a ‘monkey bar’ mechanism. elife 7:e37818

    Article  Google Scholar 

  13. Alemasova EE, Lavrik OI (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res 47(8):3811–3827

    Article  CAS  Google Scholar 

  14. Thomas C, Ji Y, Wu C, Datz H, Boyle C, MacLeod B et al (2019) Hit and run versus long-term activation of PARP-1 by its different domains fine-tunes nuclear processes. Proc Natl Acad Sci U S A 116(20):9941–9946

    Article  CAS  Google Scholar 

  15. Li N, Chen J (2014) ADP-ribosylation: activation, recognition, and removal. Mol Cells 37(1):9–16

    Article  CAS  Google Scholar 

  16. Manasaryan G, Suplatov D, Pushkarev S, Drobot V, Kuimov A, Svedas V et al (2021) Bioinformatic analysis of the nicotinamide binding site in poly(ADP-ribose) polymerase family proteins. Cancers (Basel) 13(6):1201

    Article  CAS  Google Scholar 

  17. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M et al (2018) The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46(W1):W537–WW44

    Article  CAS  Google Scholar 

  18. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–ii90

    Article  Google Scholar 

  19. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  Google Scholar 

  20. Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT (2011) BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27(12):1691–1692

    Article  CAS  Google Scholar 

  21. Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS et al (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44(W1):W160–W165

    Article  CAS  Google Scholar 

  22. Feng J, Liu T, Qin B, Zhang Y, Liu XS (2012) Identifying ChIP-seq enrichment using MACS. Nat Protoc 7(9):1728–1740

    Article  CAS  Google Scholar 

  23. Khan A, Mathelier A (2017) Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinf 18(1):287

    Article  Google Scholar 

  24. Dahmann C (2009) Drosophila: methods and protocols. Methods in molecular biology, vol 420. Humana Press, New York

    Google Scholar 

  25. Ashburner M, Golic KG, Hawley RS (2004) Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the National Science Foundation MCB-1616740 and the Department of Defense grant PC160049 to AVT. Funding agencies had no role in study design, data collection, data analysis, interpretation, or writing of the report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bordet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bordet, G., Bamgbose, G., Bhuiyam, S.H., Johnson, S., Tulin, A.V. (2023). Chromatin Immunoprecipitation Approach to Determine How PARP1 Domains Affect Binding Pattern to Chromatin. In: Tulin, A.V. (eds) Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 2609. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2891-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2891-1_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2890-4

  • Online ISBN: 978-1-0716-2891-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics