Skip to main content

Chromatin Preparation and Chromatin Immunoprecipitation from Drosophila Heads

  • Protocol
  • First Online:
Polycomb Group Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2655))

  • 559 Accesses

Abstract

Chromatin immunoprecipitation (ChIP) is a widely used method to map protein–DNA interactions in vivo. Formaldehyde cross-linked chromatin is fragmented, and the protein of interest is immunoprecipitated using a specific antibody. The co-immunoprecipitated DNA is then purified and analyzed by quantitative PCR (ChIP-qPCR) or next-generation sequencing (ChIP-seq). Therefore, from the amount of DNA recovered, it can be inferred the localization and abundance of the target protein at specific loci or throughout the entire genome. This protocol describes how to perform ChIP from Drosophila adult fly heads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orlando V, Paro R (1993) Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin. Cell 75(6):1187–1198. https://doi.org/10.1016/0092-8674(93)90328-n

    Article  CAS  PubMed  Google Scholar 

  2. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25(3):99–104. https://doi.org/10.1016/s0968-0004(99)01535-2

    Article  CAS  PubMed  Google Scholar 

  3. Breiling A, Turner BM, Bianchi ME, Orlando V (2001) General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412(6847):651–655. https://doi.org/10.1038/35088090

    Article  CAS  PubMed  Google Scholar 

  4. Sessa L, Breiling A, Lavorgna G, Silvestri L, Casari G, Orlando V (2007) Noncoding RNA synthesis and loss of Polycomb group repression accompanies the colinear activation of the human HOXA cluster. RNA 13(2):223–239. https://doi.org/10.1261/rna.266707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cernilogar FM, Onorati MC, Kothe GO, Burroughs AM, Parsi KM, Breiling A, Lo Sardo F, Saxena A, Miyoshi K, Siomi H, Siomi MC, Carninci P, Gilmour DS, Corona DF, Orlando V (2011) Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 480(7377):391–395. https://doi.org/10.1038/nature10492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cernilogar FM, Burroughs AM, Lanzuolo C, Breiling A, Imhof A, Orlando V (2013) RNA-interference components are dispensable for transcriptional silencing of the drosophila bithorax-complex. PLoS One 8(6):e65740. https://doi.org/10.1371/journal.pone.0065740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cernilogar FM, Hasenoder S, Wang Z, Scheibner K, Burtscher I, Sterr M, Smialowski P, Groh S, Evenroed IM, Gilfillan GD, Lickert H, Schotta G (2019) Pre-marked chromatin and transcription factor co-binding shape the pioneering activity of Foxa2. Nucleic Acids Res 47(17):9069–9086. https://doi.org/10.1093/nar/gkz627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guida V, Cernilogar FM, Filograna A, De Gregorio R, Ishizu H, Siomi MC, Schotta G, Bellenchi GC, Andrenacci D (2016) Production of small noncoding RNAs from the flamenco locus is regulated by the gypsy retrotransposon of Drosophila melanogaster. Genetics 204(2):631–644. https://doi.org/10.1534/genetics.116.187922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schauer T, Schwalie PC, Handley A, Margulies CE, Flicek P, Ladurner AG (2013) CAST-ChIP maps cell-type-specific chromatin states in the Drosophila central nervous system. Cell Rep 5(1):271–282. https://doi.org/10.1016/j.celrep.2013.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Neill LP, Turner BM (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31(1):76–82. https://doi.org/10.1016/s1046-2023(03)00090-2

    Article  PubMed  Google Scholar 

  11. Rasmussen KD, Berest I, Kebetaler S, Nishimura K, Simon-Carrasco L, Vassiliou GS, Pedersen MT, Christensen J, Zaugg JB, Helin K (2019) TET2 binding to enhancers facilitates transcription factor recruitment in hematopoietic cells. Genome Res 29(4):564–575. https://doi.org/10.1101/gr.239277.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo M. Cernilogar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Andrenacci, D., Cernilogar, F.M. (2023). Chromatin Preparation and Chromatin Immunoprecipitation from Drosophila Heads. In: Lanzuolo, C., Marasca, F. (eds) Polycomb Group Proteins. Methods in Molecular Biology, vol 2655. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3143-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3143-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3142-3

  • Online ISBN: 978-1-0716-3143-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics