Skip to main content

Imaging the Plant Cytoskeleton by High-Pressure Freezing and Electron Tomography

  • Protocol
  • First Online:
The Plant Cytoskeleton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2604))

Abstract

Electron tomography (ET) imaging of high-pressure frozen/freeze-substituted samples provides a unique opportunity to study structural details of organelles and cytoskeletal arrays in plant cells. In this chapter, we discuss approaches for sample preparation by cryofixation at high pressure, freeze substitution, and resin embedding. We also include pipelines for data collection for electron tomography at ambient temperature, tomogram calculation, and segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hashimoto T (2015) Microtubules in plants. The Arabidopsis Book 13:e0179–e0179

    Article  Google Scholar 

  2. Paradez A, Wright A, Ehrhardt DW (2006) Microtubule cortical array organization and plant cell morphogenesis. Curr Opin Plant Biol 9:571–578

    Article  CAS  Google Scholar 

  3. Takeuchi M et al (2016) Single microfilaments mediate the early steps of microtubule bundling during preprophase band formation in onion cotyledon epidermal cells. Mol Biol Cell 27:1809–1820

    Article  Google Scholar 

  4. Smertenko A (2018) Phragmoplast expansion: the four-stroke engine that powers plant cytokinesis. Curr Opin Plant Biol 46:130–137

    Article  CAS  Google Scholar 

  5. Li J, Blanchoin L, Staiger CJ (2015) Signaling to actin stochastic dynamics. Ann Rev Plant Biol 66:415–440

    Article  CAS  Google Scholar 

  6. Li J, Arieti R, Staiger CJ (2014) Actin filament dynamics and their role in plant cell expansion. In: Plant cell wall patterning and cell shape, pp 127–162

    Chapter  Google Scholar 

  7. Duckney P et al (2021) NETWORKED2-subfamily proteins regulate the cortical actin cytoskeleton of growing pollen tubes and polarised pollen tube growth. New Phytol 231:152–164

    Article  CAS  Google Scholar 

  8. Smertenko AP et al (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16:2035–2047

    Article  CAS  Google Scholar 

  9. Wang P, Hawkins TJ, Hussey PJ (2017) Connecting membranes to the actin cytoskeleton. Curr Opin Plant Biol 40:71–76

    Article  Google Scholar 

  10. Austin JR II, Segui-Simarro JM, Staehelin LA (2005) Quantitative analysis of changes in spatial distribution and plus-end geometry of microtubules involved in plant-cell cytokinesis. J Cell Sci 118:3895–3903

    Article  CAS  Google Scholar 

  11. Segui-Simarro JM et al (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16:836–856

    Article  CAS  Google Scholar 

  12. Otegui MS, Staehelin LA (2000) Syncytial-type cell plates: a novel kind of cell plate involved in endosperm cellularization of Arabidopsis. Plant Cell 12:933–947

    Article  CAS  Google Scholar 

  13. Otegui MS, Staehelin LA (2004) Electron tomographic analysis of post-meiotic cytokinesis during pollen development in Arabidopsis thaliana. Planta 218:501–515

    Article  CAS  Google Scholar 

  14. Gilkey J, Staehelin LA (1986) Advances in ultrarapid freezing for the preservation of cellular structure. J Electron Microsc Tech 3:177–210

    Article  Google Scholar 

  15. McDonald KL (2014) Out with the old and in with the new: rapid specimen preparation procedures for electron microscopy of sectioned biological material. Protoplasma 251:429–448

    Article  CAS  Google Scholar 

  16. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  CAS  Google Scholar 

  17. Weiner E et al (2022) Electron microscopy for imaging organelles in plants and algae. Plant Physiol 188:713–725

    Article  CAS  Google Scholar 

  18. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51

    Article  Google Scholar 

  19. Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120:343–352

    Article  CAS  Google Scholar 

  20. Mastronarde DN (2008) Correction for non-perpendicularity of beam and tilt axis in tomographic reconstructions with the IMOD package. J Microsc 230:212–217

    Article  CAS  Google Scholar 

  21. McDonald KL (2014) Rapid embedding methods into epoxy and LR white resins for morphological and immunological analysis of cryofixed biological specimens. Microsc Microanal 20:152–163

    Article  CAS  Google Scholar 

  22. McDonald KL, Webb RI (2011) Freeze substitution in 3 hours or less. J Microsc 243:227–233

    Article  CAS  Google Scholar 

  23. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  Google Scholar 

  24. Reipert S et al (2018) Agitation modules: flexible means to accelerate automated freeze substitution. J Histochem Cytochem 66:903–921

    Article  CAS  Google Scholar 

  25. Yang Z et al (2012) UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J Struct Biol 179:269–278

    Article  CAS  Google Scholar 

  26. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  27. Zhang Q, Bettadapura R, Bajaj C (2012) Macromolecular structure modeling from 3D EM using VolRover 2.0. Biopolymers 97:709–731

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant NSF MCB 2114603 to MSO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa S. Otegui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pennington, J., Otegui, M.S. (2023). Imaging the Plant Cytoskeleton by High-Pressure Freezing and Electron Tomography. In: Hussey, P.J., Wang, P. (eds) The Plant Cytoskeleton. Methods in Molecular Biology, vol 2604. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2867-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2867-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2866-9

  • Online ISBN: 978-1-0716-2867-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics