Skip to main content

Pollen Cryopreservation of Coniferous Serbian Spruce (Picea omorika/Panč./Purkyne) and Deciduous Pedunculate Oak (Quercus robur L.) Species

  • Protocol
  • First Online:
Pollen Cryopreservation Protocols

Abstract

One of the alternative strategies to conserve and preserve the genetic variation of many plant species is pollen cryopreservation. The aim of this study was to develop protocols for preserving pollen from coniferous Serbian spruce (Picea omorika/Panč./Purkyne) and deciduous pedunculate oak (Quercus robur L.) species. Although these species have different forms (coniferous vs. deciduous), both of them are monoecious and anemophilous. Samples from different localities over a few successive years were collected and stored at four temperatures (+23 °C, +5 °C, −15 °C, and −20 °C). Pollen viability analysis methods include protocols for collecting fresh pollen, storing it under controlled temperatures and light conditions, and microscopic analysis of pollen (viability %, germination %, germination energy-pollen tube length μm). Experiments to analyze the viability of stored pollen were set up every month during the first year of storage, every 3 months during the second year of storage, and once a year during the third and subsequent years of storage. The pollen vitality was observed by staining test (TTC-2,3,5-triphenyl tetrazolium chloride). Pollen viability was evaluated by pollen germination percentage and pollen tube length on six sucrose medium (0%, 5%, 10%, 15%, 20%, 25%) for fresh pollen and periodically for pollen after cryopreservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cope J, Singletary G, Krone T, Etter SK (2020) U.S. Patent No. 10,575,517. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  2. Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47(1):5–16

    Article  Google Scholar 

  3. Batos B, Miljković D, Bobinac M (2012) Some characters of the pollen of spring and summer flowering common oak (Quercusrobur L.). Arch Biol Sci 64(1):89–95

    Article  Google Scholar 

  4. Batos B (2013) Picea omorika /Panč./Purkyne – Balkan endemic and tertiary relict (Serbian spruce – flowering, pollen, seed). Monography, LAP LAMBERT Academic Publishing, Germany, GmbH & Co. KG, pp 1–129. ISBN: 978-3-659-47564-1

    Google Scholar 

  5. Batos B, Nikolić B (2013) Variability of in vitro germination of Picea omorika pollen. Dendrobiology 69:13–19

    Article  Google Scholar 

  6. Batos B, ŠešlijaJovanović D, Miljković D (2014) Spatial and temporal variability of flowering in the pedunculate oak (Quercusrobur L.). Šumarski list 7-8:371–379

    Google Scholar 

  7. Batos B, Miljković D (2017) Pollen viability in Quercusrobur L. Arch Biol Sci 69(1):111–117

    Article  Google Scholar 

  8. Batos B, Veselinović M, Rakonjac L, Miljković D (2019) Morphological properties of pollen as bioindicators of deciduous woody species in Belgrade parks (Serbia). Topola 203:19–30

    Google Scholar 

  9. Batos B, Miljković D (2019) The vitality of the Serbian spruce (Piceaomorika) pollen during the long-term cryopreservation. Grana 58(6):433–446

    Article  Google Scholar 

  10. Agrawal A, Gowthami R, Srivastava V, Malhotra EV, Pandey R, Sharma N, Gupta S, Bansal S, Chaudhury R, Rana JC, Tyagi RK, Singh K (eds) (2019) Laboratory Manual for Eighth International Training Course on In Vitro and Cryopreservation Approaches for Conservation of Plant Genetic Resources. ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, Biodiversity International-India, Delhi, Asia Pacific Association for Agricultural Research Institutions (APAARI)/Asia-Pacific Consortium on Agricultural Biotechnology and Bioresources (APCoAB), Bangkok, 5–19 Nov 2019, xviii+83 p

    Google Scholar 

  11. Loo J, Fady B, Dawson I, Vinceti B, Baldinelli G (2011) Climate change and forest genetic resources – State of knowledge, risks and opportunities. Background study paper no. 56. https://hal.inrae.fr/hal-02808387/document

  12. Blakesley D, Pask N, Henshaw GG, Fay MF (1996) Biotechnology and the conservation of forest genetic resources: in vitro strategies and cryopreservation. Plant Growth Regul 20(1):11–16

    Article  CAS  Google Scholar 

  13. Edesi J, Tolonen J, Ruotsalainen AL, Aspi J, Häggman H (2020) Cryopreservation enables long-term conservation of critically endangered species Rubushumulifolius. Biodivers Conserv 29(1):303–314

    Article  Google Scholar 

  14. Sever K, Škvorc Ž, Bogdan S, Franjić J, Krstonošić D, Alešković I, Kereša S, Fruk G, Jemrić T (2012) In vitro pollen germination and pollen tube growth differences among Quercus robur L. clones in response to meteorological conditions. Grana 51(1):25–34

    Article  Google Scholar 

  15. Wrońska-Pilarek D, Wiatrowska B, Bocianowski J (2019) Pollen morphology and variability of invasive Spiraea tomentosa L. (Rosaceae) from populations in Poland. PLoS One 14(8):e0218276

    Article  PubMed  PubMed Central  Google Scholar 

  16. Batos B, Miljković D (2019) b. the phenotypic plasticity of Piceaomorika/Panc./Purkyne morphological pollen traits. Genetika 51(1):121–136

    Article  Google Scholar 

  17. IUCN 2018 The IUCN red list of threatened species. Version 2018-2. http://www.iucnredlist.org

  18. Dell’Oro M, Mataruga M, Sass-Klaassen U, Fonti P (2020) Climate change threatens on endangered relict Serbian spruce. Dendrochronologia 59:125651

    Article  Google Scholar 

  19. Aleksić JM, Geburek T (2014) Quaternary population dynamics of an endemic conifer, Picea omorika, and their conservation implications. Conserv Genet 15:87–107

    Article  Google Scholar 

  20. Jovanović B (1971) Dendrology and phytocenology, 2nd unchanged edn. Scientific books University of Belgrade, pp 84–96

    Google Scholar 

  21. Erdtman G (1957) Pollen and spore morphology/plant taxonomy. Gymnospermae, Pteridophyta, Bryophita (illustrations). Almquist & Wiksell, Stockholm, p 151

    Google Scholar 

  22. Grbović B (1998) Individual variability of regularity, abundance and morphometric properties of Serbian spruce (Piceaomorika/Panč./Purkyne) microstrobiles. Manuscript in the book Progress in Botanical Research by IoannesTsekos. Michael Moustakas – Kluwer Academic Publishers Dordrecht Hardbound, Proceedings of the 1st Balkan Botanical Congress, pp 493–96

    Google Scholar 

  23. Batos B (2012) Diversity of pedunculate oak (Quercus robur L.). Monograph, Foundation Andrejević, Belgrade, Serbia, pp 1–102. ISSN 1450-801X, ISBN 978-86-525-0057-4

    Google Scholar 

  24. Pulkkinen P, Rantio-Lehtimaki A (1995) Viability and seasonal distribution patterns of Scots pine pollen in Finland. Tree Physiol 15:515–518

    Article  PubMed  Google Scholar 

  25. Lanteri S, Belletti P, Lotito S (1993) Storage of pollen of Norway spruce and different pine species. Silvae Genet 42:104–109

    Google Scholar 

  26. Fernando DD, Richards JL, Kikkert JR (2006) In vitro germination and transient GFP expression of American chestnut (Castaneadentata) pollen. Plant Cell Rep 25:450–456

    Article  CAS  PubMed  Google Scholar 

  27. Kormutak A, Bohovičova J, Vookova B, Gomory D (2007) Pollen viability in hybrid swarm populations of PinusmugoTurra and P. sylvestris L. Acta Biol Cracov Bot 49:61–66

    Google Scholar 

  28. Grbović B, Isajev V (1997) Variability of pollen viability of 25 Serbian spruce (Piceaomorika/Panč./Purkyne) test tress. Proceedings of the 3th International Conference on the development of forestry and wood science/technology. ICFWST ‘97 Belgrade Mt. Goč Serbia/Yugoslavia II, pp 64–74

    Google Scholar 

  29. Rajora PO, Zsuffa L (2011) Pollen viability of some Populus species as indicated by in vitro pollen germination and tetrazolium chloride staining. Can J Bot 64(6):1086–1088

    Article  Google Scholar 

  30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  31. Kirby EG, Stanley RG (1976) Pollen handling techniques in forest genetics, with special reference to incompatibility. In: Miksche JP (ed) Modern methods in Forest genetics. Springer, Berlin, pp 229–241

    Chapter  Google Scholar 

  32. Arista M, Talavera S (1994) PollenDispersal capacity and pollen viability of Abies pinsapo Boiss. Silvae Genet 43(2–3):155–158

    Google Scholar 

  33. Caliskan B, Colgecen H, Pehlivan S (2009) Pollen characteristics and in vitro pollen germination of Cedrus libani A. Rich. Afr J Biotechnol 8(21):5696–5701

    Article  Google Scholar 

  34. Lin L, Yao Q, Huanwen X, Huaizhi M, Jiang J (2013) Characteristics of the staminate flower and pollen from autotetraploidBetulaplatyphylla. Dendrobiology 69:3–11

    Article  Google Scholar 

  35. Giordani E, Ferri A, Trentacoste E, Radice S (2014) Viability and in vitro germinability of pollen grains of olive cultivars grown in different environments. Acta Hortic 1057:65–71

    Article  Google Scholar 

  36. Hechmi M, Khaled M, Echarari F (2015) In vitro pollen germination of four olive cultivars (Olea europea L.): effect of boric acid and storage. Am J Plant Physiol 10(2):55–67

    Article  CAS  Google Scholar 

  37. Wrońska-Pilarek D, Danielewicz W, Bocianowski J, Maliński T, Janyszek M (2016) Comparative pollen morphological analysis and its systematic implications on three European Oak (Quercus L, Fagaceae) species and their spontaneous hybrids. PLoS One 11(8):e0161762

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This paper was financed by the Ministry of Education and Science of the Republic of Serbia (contract number 451-03-68/2020-14/200007). Gratitude: to the technical associate Miloš Bokorov, Faculty of Sciences, Department of Biology and Ecology, University Center for Electronic Microscopy, Novi Sad (UCEM-NS), who took Figs. 2 and 3. The other attached photos were taken by the author of the paper Dr. B. Batos, Institute for Forestry, Belgrade. The authors wish to thank the college Dr. Darka Šešlija Jovanović and English language editor, native speaker, and teacher of English Mrs. Esther Grace Helajzen for proofreading and revising text correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijela Miljković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Batos, B., Miljković, D. (2023). Pollen Cryopreservation of Coniferous Serbian Spruce (Picea omorika/Panč./Purkyne) and Deciduous Pedunculate Oak (Quercus robur L.) Species. In: Rajasekharan, P., Rohini, M. (eds) Pollen Cryopreservation Protocols . Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2843-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2843-0_53

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2842-3

  • Online ISBN: 978-1-0716-2843-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics