Skip to main content

Isolation of Endophytic Bacteria from Leaves, Stems, or Roots

  • Protocol
  • First Online:
Endophytic Microbes: Isolation, Identification, and Bioactive Potentials

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 504 Accesses

Abstract

Following the discovery of endophytic bacteria in potato, sugarcane, and rice, isolation and characterization of the same has advanced over the years. Studies of these endophytes in plant tissues require techniques that would enable researchers to either locate them in the plant tissues or isolate them from the tissues for subsequent visualization. Over the years, endophytic diazotrophic bacteria have been isolated from root, culm, stem, and leaf tissues and characterized for their activities in different crop plants, including plant growth promoters and biological nitrogen fixation. Various methods and culture media have been used depending on the crop plant under study and available resources for the laboratory procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hallmann J, Quadt-Hallmann A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agriculture crops. Can J Michrobiol 43:895–914

    Article  CAS  Google Scholar 

  3. Chanway CP (1996) Endophytes: they’re not just fungi. Can J Bot 74(3):321–322

    Article  Google Scholar 

  4. Trevet IW, Hollis JP (1948) Bacteria in storage organs of healthy plants. Phytopathology 38:960–967

    Google Scholar 

  5. Richardson A, Barea JM, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339

    Article  CAS  Google Scholar 

  6. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth- promoting bacterium Herbaspirillumseropedicae Z67. Mol Plant-Microbe Interact 15(9):894–906

    Article  CAS  PubMed  Google Scholar 

  7. Trognitz F, Piller K, Nagel M, Borner A, Bacher C-F, Rechlik M, Mayrhofer H, Sessitsch A (2014) Isolation and characterization of endophytes isolated from seeds of different plants and the application to increase juvenile development. In Future seed – production, marketing, use and conservation [TagungZukünftigesSaatgut—Produktion, Vermarktung, Nutzung und Konzervierung]; 24–26 November 2014; Austria, pp 25–28. Irdning: HöhereBundeslehr- und ForschungsanstaltfürLandwirtschaftRaumberg-Gumpenstein

    Google Scholar 

  8. Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27(4):462–468

    Article  CAS  PubMed  Google Scholar 

  9. Paul LR, Chapman WK, Chanway CP (2013) Diazotrophic bacteria reside inside Suillustomentosus/Pinus contorta tuberculate ectomycorrhizae. Botany 91(1):48–52

    Article  CAS  Google Scholar 

  10. Cavalcante VA, Döbereiner J (1988) A new acid tolerant nitrogen fixing bacterium associated with sugarcane. Plant Soil 108(1):23–31

    Article  Google Scholar 

  11. Baldani VLD, Baldani JI, Döbereiner J (2000) (2000). Inoculation of rice plants with the endophytic diazotrophs Herbaspirillumseropedicae and Burkholderia spp. Biol Fertil Soils 30(5–6):485–491

    Article  Google Scholar 

  12. Hurek T, Handley LL, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant-Microbe Interact 15(3):233–242

    Article  CAS  PubMed  Google Scholar 

  13. Olivares FL, Baldani VLD, Reis VM, Baldani JI, Döbereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils 21(3):197–200

    Article  Google Scholar 

  14. Montañez A, Abreu C, Gill PR, Hardarson G, Sicardi M (2009) Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope-dilution and identification of associated culturable diazotrophs. Biol Fertil Soils 45(3):253–263

    Article  Google Scholar 

  15. Sabry RS, Saleh SA, Batchelor CA, Jones J, Jotham J, Webster G, Kothari SL, Davey MR, Cocking EC (1997) Endophytic establishment of Azorhizobiumcaulinodans in wheat. Proc R Soc Lond B Biol Sci 264(1380):341–346

    Article  Google Scholar 

  16. Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15–24

    Article  CAS  Google Scholar 

  17. Rao HC, Savalgi VP (2017) Isolation and screening of nitrogen fixing endophytic bacterium Gluconacetobacterdiazotrophicus GdS25. Int J Curr Microbiol App Sci 6(3):1364–1373

    Article  CAS  Google Scholar 

  18. Puri A, Padda KP, Chanway CP (2018) Nitrogen-fixation by endophytic bacteria in agricultural crops: recent advances. IntechOpen, London

    Google Scholar 

  19. Kirchhof G, Reis VM, Baldani JI, Eckert B, Döbereiner J, Hartmann A (1997) Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194:45–51

    Article  CAS  Google Scholar 

  20. Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17(1):29–54

    Article  Google Scholar 

  21. Sturz AV, Matheson BG (1996) Populations of endophytic bacteria which influence host resistance to Erwinia induced bacterial soft rot in potato tubers. Plant Soil 184:265–271

    Article  CAS  Google Scholar 

  22. Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce Prisca Bakuwa Njoloma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Njoloma, J.P.B. (2023). Isolation of Endophytic Bacteria from Leaves, Stems, or Roots. In: Sankaranarayanan, A., Amaresan, N., Dwivedi, M.K. (eds) Endophytic Microbes: Isolation, Identification, and Bioactive Potentials. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2827-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2827-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2826-3

  • Online ISBN: 978-1-0716-2827-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics