Skip to main content

A Computational Protocol for Dating the Evolution of Cyanobacteria

  • Protocol
  • First Online:
Environmental Microbial Evolution

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2569))

Abstract

Cyanobacteria are known to play important roles in driving biological and geochemical innovations in ancient Earth. The origin of Cyanobacteria is the key to understanding these evolutionary events and thus has gained much interest to biologists and geobiologists. Recent development of the molecular dating approaches provides us an opportunity to assess the timeline of Cyanobacteria evolution based on relaxed clock models. The implementation of Bayesian phylogenetic approaches accommodates the uncertainties from different sources, such as fossil calibrations and topological structure of the phylogenomic tree, and provides us converged estimates of posterior mean ages. In this chapter, by taking Cyanobacteria as an example, we introduce a refined strategy to perform molecular dating analysis, as well as a practical method to evaluate the precision of dating analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luo G, Ono S, Beukes NJ, Wang DT, Xie S, Summons RE (2016) Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci Adv 2(5):e1600134

    PubMed  PubMed Central  Google Scholar 

  2. Sánchez-Baracaldo P, Cardona T (2020) On the origin of oxygenic photosynthesis and Cyanobacteria. New Phytol 225(4):1440–1446

    PubMed  Google Scholar 

  3. Shih PM, Hemp J, Ward LM, Matzke NJ, Fischer WW (2017) Crown group Oxyphotobacteria postdate the rise of oxygen. Geobiology 15(1):19–29

    CAS  PubMed  Google Scholar 

  4. Zuckerkandl E, Pauling L (1962) Molecular disease, evolution, and genetic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York

    Google Scholar 

  5. Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14(12):1218–1231

    CAS  Google Scholar 

  6. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4(5):e88

    PubMed  PubMed Central  Google Scholar 

  7. Rannala B, Yang Z (2007) Inferring speciation times under an episodic molecular clock. Syst Biol 56(3):453–466

    PubMed  Google Scholar 

  8. Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25(17):2286–2288

    CAS  PubMed  Google Scholar 

  9. Dos Reis M, Donoghue PC, Yang Z (2016) Bayesian molecular clock dating of species divergences in the genomics era. Nat Rev Genet 17(2):71–80

    PubMed  Google Scholar 

  10. Ho SY, Duchêne S (2014) Molecular-clock methods for estimating evolutionary rates and timescales. Mol Ecol 23(24):5947–5965

    PubMed  Google Scholar 

  11. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16(1):1–14

    CAS  Google Scholar 

  13. Foster PG, Hickey DA (1999) Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol 48(3):284–290

    CAS  PubMed  Google Scholar 

  14. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165

    CAS  PubMed  Google Scholar 

  15. Foster PG (2004) Modeling compositional heterogeneity. Syst Biol 53(3):485–495

    PubMed  Google Scholar 

  16. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274

    PubMed  PubMed Central  Google Scholar 

  17. Junier T, Zdobnov EM (2010) The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26(13):1669–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schirrmeister BE, Sanchez-Baracaldo P, Wacey D (2016) Cyanobacterial evolution during the Precambrian. Int J Astrobiol 15(3):187–204

    Google Scholar 

  19. Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC (2013) Evolution of multicellularity coincided with increased diversification of cyanobacteria and the great oxidation event. Proc Natl Acad Sci USA 110(5):1791–1796

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Golubic S, Sergeev VN, Knoll AH (1995) Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. Lethaia 28(4):285–298

    CAS  PubMed  Google Scholar 

  21. Sergeev V, Gerasimenko L, Zavarzin G (2002) The proterozoic history and present state of cyanobacteria. Microbiology 71(6):623–637

    CAS  Google Scholar 

  22. Crowe SA, Døssing LN, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501(7468):535–538

    CAS  PubMed  Google Scholar 

  23. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on earth before 3,800 million years ago. Nature 384(6604):55–59

    CAS  PubMed  Google Scholar 

  24. Yang Z, Rannala B (2005) Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol 23(1):212–226

    PubMed  Google Scholar 

  25. Battistuzzi FU, Hedges SB (2008) A major clade of prokaryotes with ancient adaptations to life on land. Mol Biol Evol 26(2):335–343

    PubMed  Google Scholar 

  26. Katoh K, Misawa K, Ki K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    CAS  PubMed  Google Scholar 

  28. dos Reis M, Yang Z (2019) Bayesian molecular clock dating using genome-scale datasets. In: Anisimova M (ed) Evolutionary genomics. Methods in molecular biology, vol 1910. Humana, New York

    Google Scholar 

  29. Reis M, Yang Z (2011) Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Mol Biol Evol 28(7):2161–2172

    PubMed  Google Scholar 

  30. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973

    PubMed  PubMed Central  Google Scholar 

  31. Yang Z, Rannala B (2006) Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol 23(1):212–226

    CAS  PubMed  Google Scholar 

  32. Tao Q, Barba-Montoya J, Kumar S (2021) Data-driven speciation tree prior for better species divergence times in calibration-poor molecular phylogenies. Bioinformatics 37(Supplement_1):i102–i110

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Brown RP, Yang Z (2011) Rate variation and estimation of divergence times using strict and relaxed clocks. BMC Evol Biol 11(1):1–12

    Google Scholar 

  34. Dos Reis M, Thawornwattana Y, Angelis K, Telford MJ, Donoghue PC, Yang Z (2015) Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr Biol 25(22):2939–2950

    PubMed  PubMed Central  Google Scholar 

  35. Reis MD, Gunnell GF, Barba-Montoya J, Wilkins A, Yang Z, Yoder AD (2018) Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies on divergence time estimation: primates as a test case. Syst Biol 67(4):594–615

    PubMed  PubMed Central  Google Scholar 

  36. Welch JJ, Bromham L (2005) Molecular dating when rates vary. Trends Ecol Evol 20(6):320–327

    PubMed  Google Scholar 

  37. Dittrich D, Leenders RTA, Mulder J (2019) Network autocorrelation modeling: a Bayes factor approach for testing (multiple) precise and interval hypotheses. Sociol Methods Res 48(3):642–676

    Google Scholar 

  38. Dos Reis M, Yang Z (2013) The unbearable uncertainty of Bayesian divergence time estimation. J Syst Evol 51(1):30–43

    Google Scholar 

  39. Sauquet H (2013) A practical guide to molecular dating. Comptes Rendus Palevol 12(6):355–367

    Google Scholar 

  40. Boden JS, Konhauser KO, Robbins LJ, Sánchez-Baracaldo P (2021) Timing the evolution of antioxidant enzymes in cyanobacteria. Nat Commun 12(1):1–12

    Google Scholar 

  41. Sánchez-Baracaldo P (2015) Origin of marine planktonic cyanobacteria. Sci Rep 5:17418

    PubMed  PubMed Central  Google Scholar 

  42. Sánchez-Baracaldo P, Ridgwell A, Raven JA (2014) A neoproterozoic transition in the marine nitrogen cycle. Curr Biol 24(6):652–657

    PubMed  Google Scholar 

  43. Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH (2017) Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc Natl Acad Sci USA 114(37):E7737–E7745

    PubMed  PubMed Central  Google Scholar 

  44. Falcón LI, Magallón S, Castillo A (2010) Dating the cyanobacterial ancestor of the chloroplast. ISME J 4(6):777–783

    PubMed  Google Scholar 

  45. Schirrmeister BE, Gugger M, Donoghue PC (2015) Cyanobacteria and the great oxidation event: evidence from genes and fossils. Palaeontology 58(5):769–785

    PubMed  PubMed Central  Google Scholar 

  46. Dos Reis M, Donoghue PC, Yang Z (2014) Neither phylogenomic nor palaeontological data support a Palaeogene origin of placental mammals. Biol Lett 10(1):20131003

    PubMed  PubMed Central  Google Scholar 

  47. Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, Pressel S, Wellman CH, Yang Z, Schneider H, Donoghue PC (2018) Reply to Hedges et al.: accurate timetrees do indeed require accurate calibrations. Proc Natl Acad Sci 115(41):E9512–E9513

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Marshall CR (2019) Using the fossil record to evaluate Timetree timescales. Front Genet 10:1049

    CAS  PubMed  PubMed Central  Google Scholar 

  49. William Schopf J (2011) The paleobiological record of photosynthesis. Photosynth Res 107(1):87–101

    CAS  PubMed  Google Scholar 

  50. Zhang H, Sun Y, Zeng Q, Crowe SA, Luo H (2021) Snowball earth, population bottleneck and Prochlorococcus evolution. Proc R Soc B Biol Sci 288(1963):20211956

    CAS  Google Scholar 

  51. Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409(6823):1083–1091

    CAS  PubMed  Google Scholar 

  52. Wang S, Luo H (2021) Dating Alphaproteobacteria evolution with eukaryotic fossils. Nat Commun 12(1):1–9

    Google Scholar 

  53. Warnock RC, Parham JF, Joyce WG, Lyson TR, Donoghue PC (2015) Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proc R Soc B Biol Sci 282(1798):20141013

    Google Scholar 

  54. Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P (2017) On the origins of oxygenic photosynthesis and aerobic respiration in cyanobacteria. Science 355(6332):1436–1440

    CAS  PubMed  Google Scholar 

  55. Bekker A, Holland H, Wang P-L, Rumble D, Stein H, Hannah J, Coetzee L, Beukes N (2004) Dating the rise of atmospheric oxygen. Nature 427(6970):117–120

    CAS  PubMed  Google Scholar 

  56. Wolfe JM, Fournier GP (2018) Horizontal gene transfer constrains the timing of methanogen evolution. Nat Ecol Evol 2(5):897–903

    PubMed  Google Scholar 

  57. Davín AA, Tannier E, Williams TA, Boussau B, Daubin V, Szöllősi GJ (2018) Gene transfers can date the tree of life. Nat Ecol Evol 2(5):904–909

    PubMed  PubMed Central  Google Scholar 

  58. Magnabosco C, Moore KR, Wolfe JM, Fournier GP (2018) Dating phototrophic microbial lineages with reticulate gene histories. Geobiology 16(2):179–189

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (SMSEGL20SC02) and Hong Kong Research Grants Council General Research Fund (14110820).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Data Availability

Data Availability

The custom scripts as well as the genome set of Cyanobacteria are available in the online GitHub repository (https://github.com/luolab-cuhk/MMB_Cyano_dating).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, H., Wang, S., Luo, H. (2022). A Computational Protocol for Dating the Evolution of Cyanobacteria. In: Luo, H. (eds) Environmental Microbial Evolution. Methods in Molecular Biology, vol 2569. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2691-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2691-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2690-0

  • Online ISBN: 978-1-0716-2691-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics