Skip to main content

Purification and Characterization of a Cysteine Protease from Sprouted Lablab purpureus Seed Radicle Extract: Its Effect on Blood Coagulation

  • Protocol
  • First Online:
Natural Product Experiments in Drug Discovery

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 522 Accesses

Abstract

Germinating seeds contain several groups of proteases that have been implicated in seed germination. The major function of the proteases is to help in degradation and mobilization of storage proteins. The germinating seeds rich in active enzymes, especially proteases, have been used in therapeutic and as antiaging diet components.

This study aimed to study the role of cysteine protease purified from sprouted Lablab purpureus seed radicle extract (LPRE) in hemostasis and platelet aggregation. The cysteine protease has been purified by two-step purification using Sephadex G-75 and DEAE Sephadex A-50 column chromatography. The protease is named as “Purpurease.” The SDS-PAGE, reversed phase HPLC, and MALDI-TOF mass spectrometry confirmed the homogeneity and purity of the purified protease. The molecular weight of the “Purpurease” was found to be 47.2 kDa. The protease was assayed using fat-free casein and gelatin as substrate. Among protease inhibitors EDTA, 1,10-phenanthroline, aprotinin, E-64, and pepstatin-A, E-64 inactivated the enzyme irreversibly indicating the cysteine type of protease. The protease hydrolyzed fibrinogen in a dose-dependent manner. The protease was evaluated for effect on blood coagulation both in vitro and in vivo studies. The protease showed strong anticoagulant activity in studied methods of prothrombin time (PT), activated partial thromboplastin time (APTT), and recalcification time (RT). In an in vivo study using mouse model, the protease exhibited anticoagulant activity in tail bleeding assay increasing the bleeding time from 140 ± 5 sec to 650 ± 20 sec. The protease further evaluated for its effect on platelet aggregation. The protease inhibited the platelet aggregation significantly when collagen and ADP used as agonists. The protease inhibited platelet aggregation to an extent of 82% and 68% with collagen and ADP-induced aggregation, respectively.

Thus a cysteine protease has been purified and evaluated for its effect on coagulation and platelet aggregation. The protease can be studied further for its therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528

    Article  PubMed  Google Scholar 

  2. World Health Organization (2017) Cardiovascular Diseases (CVDs) (World Health Organization). Available https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 26 June 2019

  3. Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A (2010) Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol 35:72–115

    Article  PubMed  PubMed Central  Google Scholar 

  4. Karch AM (2012) Pharmacologial review: drugs that alter blood coagulation. Am Nurse Today 7:(11):26–31

    Google Scholar 

  5. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G (2017) Global regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am College Cardiol 70(1):1–25

    Article  Google Scholar 

  6. Aguirre J, Borgeat A (2013) Drugs for Thromboprophylaxis: unfractionated heparin, low molecular weight heparin, warfarin, and Fondaparinux. In: Llau JV (ed) Thromboembolism in orthopedic surgery, London: springer. England, London, pp 53–65

    Chapter  Google Scholar 

  7. Bruno O, Schenone S, Ranise A, Bondavalli F, Barocelli E, Ballabeni V, Chiavarini M, Bertoni S, Tognolini M, Impicciatore M (2001) New polycyclic pyrimidine derivatives with antiplatelet in vitro activity: synthesis and pharmacological screening. Bioorg Med Chem 9:629–636

    Article  CAS  PubMed  Google Scholar 

  8. Izzo AA, Ernst E (2009) Interactions between herbal medicines and prescribed drugs: an updated systematic review. Drugs 69(13):1777–1798

    Article  CAS  PubMed  Google Scholar 

  9. Ren J, Fu L, Nile SH, Zhang J, Kai G (2019) Salvia miltiorrhiza in treating cardiovascular diseases: a review on its pharmacological and clinical applications. Front Pharmacol 10:753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tachjian A, Maria V, Jahangir A (2010) Use of herbal products and potential interactions in patients with cardiovascular diseases. J Am Coll Cardiol 55(6):515–525

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ao XL, Yu X, Wu DT, Li C, Zhang T, Liu SL, Chen SJ, He L, Zhou K, Zou LK (2018) Purification and characterization of neutral protease from Aspergillusoryzae Y1 isolated from naturally fermented broad beans. AMB Express 8(1):96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Frishman WH, Beravol P, Carosella C (2009) Alternative and complementary medicine for preventing and treating cardiovascular disease. Dis Mon 55(3):121–192

    Article  PubMed  Google Scholar 

  13. Lee W, Yang EJ, Ku SK, Song KS, Bae JS (2012) Anticoagulant activities of oleanolic acid via inhibition of tissue factor expressions. Kor Soc Biochem Mol Biol 45(7):390–395

    CAS  Google Scholar 

  14. Yeh GY, Davis RB, Phillips RS (2006) Use of complementary therapies in patients with cardiovascular disease. Am J Cardiol 98(5):673–680

    Article  PubMed  Google Scholar 

  15. Rawski RI, Sanecki PT, Dżugan M, Kijowska K (2018) The evidence of proteases in sprouted seeds and their application for animal protein digestion. Chem Zvesti 72(5):1213–1221

    CAS  PubMed  Google Scholar 

  16. Martinez M, Gómez-Cabellos S, Giménez MJ, Barro F, Diaz I, Diaz-Mendoza M (2019) Plant proteases: from key enzymes in germination to allies for fighting human gluten-related disorders. Front Plant Sci 10:721

    Article  PubMed  PubMed Central  Google Scholar 

  17. Urs AP, Rudresha GV, Manjuprasanna VN, Suvilesh KN, Gowda MDM, Yariswamy M, Hiremath V, Ramakrishnan C, Savitha MN, Jayachandra K, Sharanappa P, Vishwanath BS (2019) Plant latex thrombin-like cysteine proteases alleviates bleeding by bypassing factor VIII in murine model. J Cell Biochem 120(8):12843–12858

    Article  CAS  PubMed  Google Scholar 

  18. Kumar S, Joseph L, George M, Sharma A (2011) A review on anticoagulant/antithrombotic activity of natural plants used in traditional medicine. Int J Pharm Sci Rev Res 8:70–74

    Google Scholar 

  19. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Otvos RA, Still KBM, Somsen GW, Smit AB, Kool J (2019) Drug discovery on natural products: from ion channels to nAChRs, from nature to libraries, from analytics to assays. SLAS Discov 24(3):362–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tabassum N, Ahmad F (2011) Role of natural herbs in the treatment of hypertension. Pharmacogn Rev 5(9):30–40

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Francis AA, Deniset JF, Austria JA, LaValleé RK, Maddaford GG, Hedley TE, Dibrov E, Pierce GN (2013) Effects of dietary flaxseed on atherosclerotic plaque regression. Am J Physiol Heart Circ Physiol 304:1743–1751

    Article  CAS  Google Scholar 

  24. Kim JH, Lee J, Kang S, Moon H, Chung KH, Kim KR (2016) Antiplatelet and antithrombotic effects of the extract of Linderaobtusiloba leaves. BiomolTher (Seoul) 24(6):659–664

    Article  CAS  Google Scholar 

  25. Manicam C, Abdullah JO, Tohit ERM, Seman Z, Chin SC, Hamid M (2010) In vitro anticoagulant activities of Melastoma malabathricum Linn. aqueous leaf extract: a preliminary novel finding. J Med Plant Res 4(14):1464–1472

    Google Scholar 

  26. Dilara P, Mir Muhammad NU, Siddiqu MI, Salma P, Mohammad S (2013) Phytochemical screenings, thrombolytic activity and antimicrobial properties of the leaf extracts of lablab parpureus. Am J Res Com 1(2):49–55

    Google Scholar 

  27. Sheila MK, Anselimo OM, Glaston MK (2017) Physical characteristics, proximate composition and anti-nutritional factors in grains of lablab bean (Lablab purpureus) genotypes from Kenya. J App Bio 114:11289–11298

    Google Scholar 

  28. Kante K, Reddy CS (2013) Anti diabetic activity of Dolichos lablab (seeds) in streptozotocin-nicotinamide induced diabetic rats. Hyg J Dru Med 1:32–40

    Google Scholar 

  29. Maass BL, Knox MR, Venkatesha SC, Angessa TT, Ramme S, Pengelly BC (2010) Lablab purpureus – a crop lost for Africa. Tro Pla Bio 3(3):123–135

    Article  Google Scholar 

  30. Shivashankar G, Kulkarni RS (1998) Lablab purpureus (L.) sweet. In: der Maesen LJG V, Somaatmadja S (eds) Plant resources of South-East Asia No 1. pulses. Pudoc, Wageningen, pp 48–50. Sheahan, CM. Plant guide for lablab (Lablab purpureus). USDA-Natural Resources Conservation Service, Cape May Plant Materials Center. Cap May. NJ. 2012

    Google Scholar 

  31. Thoyajakshi RS, Poornima D (2021) Anticoagulant, fibrinogenolytic and anti-platelet aggregation activities of lablab Purpureus (L.) sweet seed radicle aqueous extract. Plant Sci Today 8:89–94

    Article  CAS  Google Scholar 

  32. Satake M, Murata Y, Suzuki T (1963) Studies on snake venoms XIII. Chromatographicseparation and properties of three proteinases from Agkistrodon halys blomhoffii venom. J Biochem 53:438–447

    Article  CAS  PubMed  Google Scholar 

  33. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  34. Shivaiah N, Kempaiah K (2011) ‘Partitagin’, a unique β, γ-fibrinogenase that inhibits platelet aggregation from Hippasa partita spider venom. Blood Coagul Fibrinolysis 22(1):24–28

    Article  CAS  PubMed  Google Scholar 

  35. Condrea E, Yang CC, Rosenberg P (1983) Anticoagulant activityand plasma phosphatidylserine hydrolysis by snake venomphospholipases A2. Thromb Haemost 49:151

    Article  CAS  PubMed  Google Scholar 

  36. Quick AJ, Stanley-Brown M, Bancroft FW (1935) A study of the coagulation defect in hemophilia and in jaundice. Am J Med Sci 190:501–511

    Article  Google Scholar 

  37. Liu Y, Jennings NL, Dart AM, Du X-J (2012) Standardizing a simpler, more sensitive and accurate tail bleeding assay in mice. World J Exp Med 2(2):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lasukova T, Maslov L, Arbuzov A, Burkova V, Inisheva L (2015) Cardioprotective activity of Ganodermalucidum extract during total ischemia and reperfusion of isolated heart. Bull Exp Biol Med 158(6):739–741

    Article  CAS  PubMed  Google Scholar 

  39. Liperoti R, Vetrano DL, Bernabei R, Onder G (2017) Herbal medications in cardiovascular medicine. J Am College Cardiol 69(9):1188–1199

    Article  Google Scholar 

  40. Kusuma CG, Gubbiveeranna V, Sumachirayu CK, Bhavana S, Ravikumar H, Nagaraju S (2020) The hemostatic activity of Manilkara zapota (L.) P. Royen latex associated with fibrinogenolytic activity. Plant Sci Today 7(3):469–475

    Article  CAS  Google Scholar 

  41. Kusuma CG, Gubbiveeranna V, Sumachirayu CK, Bhavana S, Ravikumar H, Nagaraju S (2021) Thrombin- and plasmin-like and platelet-aggregation-inducing activities of Plumeria alba L. latex: action of cysteine protease. J Ethnopharmacol 273:114000

    Article  CAS  PubMed  Google Scholar 

  42. Ovanesov MV (2015) Study of the regulation of blood coagulation by factors VIIa and IXa. U.S food & drug aministration, biologic research project, New Hampshire Avenue, Silver Spring, MD

    Google Scholar 

  43. Nagaraju S, Girish KS, Fox JW, Kemparaju K (2007) “Partitagin” a hemorrhagicmetalloprotease from Hippasa partita spider venom: role in tissue necrosis. Biochimie 89(11):1322–1331

    Article  CAS  PubMed  Google Scholar 

  44. Nagaraju S, Mahadeswaraswamy YH, Girish KS, Kemparaju K (2006) Venom from spiders of the genus Hippasa: biochemical and pharmacological studies. Comp Biochem Physio 144(1):1–9

    CAS  Google Scholar 

  45. Poulsen BK, Grove EL, Husted SE (2012) New oral anticoagulants. Drugs 72:1739–1753

    Article  CAS  PubMed  Google Scholar 

  46. Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21(5):E559

    Article  PubMed  CAS  Google Scholar 

  47. El Haouari M, Mekhfi H (2017) Anti-platelet aggregation effects of extracts from Arbutus unedo leaves. Plant Sci 4(2):68–74

    Google Scholar 

  48. Félix-Silva J, Souzal T, Camara RBG, Cabral B, Silva-Júnior AA, Rebecchi IMM, Zucolotto SM, Rocha HAO, Fernandes-Pedrosa MF (2014) In vitro anticoagulant and antioxidant activities of Jatrophagossypiifolia L. (Euphorbiaceae) leaves aiming therapeutical applications. BMC Complement Altern Med 14:405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Vinod G, Kusuma CG, Bhavana S, Sumachirayu CK, Ravikumar H, Nagaraju S (2019) Potent procoagulant and platelet aggregation inducing serine protease from Tridax procumbens extract. Pharm Res 11(4):363–370

    Google Scholar 

  50. Vinod G, Kusuma CG, Bhavana S, Sumachirayu CK, Nagaraju S (2019a) Anti-hemostatic protease from Jatrophacurcas latex with fibrinogen lytic activity. J Pharmacogn Phytochem 8(1):1303–1310

    Google Scholar 

  51. Wang Z, Zhang J, Ren T, Dong Z (2016) Targeted metabolomic profiling of cardioprotective effect of Ginkgo biloba L. extract on myocardial ischemia in rats. Phytomedicine 23(6):621–631. https://doi.org/10.1016/j.phymed.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  52. Gubbiveeranna V, Gangadharaiah KC, Thoyajakshi RS, Hemagirigowda R, Shivaiah N (2021) Anticoagulant and fibrinogenolytic properties of seed extract of psidium guajava. Indian J Pharm Sci 83(5):918–924

    Article  CAS  Google Scholar 

  53. Valli G, Giardina EG (2002) Benefits, adverse effects and drug interactions of herbal therapies with cardiovascular effects. J Am Coll Cardiol 39(7):1083–1095

    Article  PubMed  Google Scholar 

  54. Mekhfi H, El Haouri M, Legssyer A, Bnouham M, Aziz M, Atmani F, Remmal A, Ziyyat A (2004) Platelet anti-aggregant property some Moroccan medicinal plants. J Ethnopharmacol 94:317–322

    Article  PubMed  Google Scholar 

  55. Vinod G, Nagaraju S (2016) Ethnomedicinal, phytochemical constituents and pharmacological activities of Tridax procumbens: a review. Int J Phar Pharm Sci 8(2):1–7

    Google Scholar 

  56. Liu Y, Oh SJ, Chang KH, Kim YG, Lee MY (2013) Antiplatelet effect of AMP-activated protein kinase activator and its potentiation by the phosphodiesterase inhibitor dipyridamole. Biochem Pharmacol 86(7):914–925

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thoyajakshi, R.S., Nagaraju, S., Ravi Kumar, H., Poornima, D. (2023). Purification and Characterization of a Cysteine Protease from Sprouted Lablab purpureus Seed Radicle Extract: Its Effect on Blood Coagulation. In: Arunachalam, K., Yang, X., Puthanpura Sasidharan, S. (eds) Natural Product Experiments in Drug Discovery. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2683-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2683-2_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2682-5

  • Online ISBN: 978-1-0716-2683-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics