Skip to main content

Analysis of Peripherally Derived Treg in the Intestine

  • Protocol
  • First Online:
Regulatory T-Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2559))

Abstract

Elucidation of the symbiotic relationship between the host and its gut microbiota is critically important for understanding host pathophysiology. Peripherally derived regulatory T cells (pTregs) are recognized as central to immune homeostasis in the intestine. Moreover, the gut microbiota nourishes the intestinal and systemic immune systems, including pTreg, via their metabolites and other components. Therefore, methods to detect pTreg as well as to analyze the interactions between the gut microbiota and pTreg are important for better understanding of the symbiotic relationship with these microorganisms. Here, we describe a protocol to isolate colonic lamina propria cells and analyze pTregs in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489:231–241. https://doi.org/10.1038/nature11551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in early life shapes the immune system. Science 352:539–544. https://doi.org/10.1126/SCIENCE.AAD9378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belkaid Y, Harrison OJ (2017) Homeostatic immunity and the microbiota. Immunity 46:562–576. https://doi.org/10.1016/j.immuni.2017.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Whibley N, Tucci A, Powrie F (2019) Regulatory T cell adaptation in the intestine and skin. Nat Immunol 20:386–396. https://doi.org/10.1038/s41590-019-0351-z

    Article  CAS  PubMed  Google Scholar 

  5. Tanoue T, Atarashi K, Honda K (2016) Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol 16:295–309

    Article  CAS  Google Scholar 

  6. Abbas AK, Benoist C, Bluestone JA et al (2013) Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol 14:307–308. https://doi.org/10.1038/ni.2554

    Article  CAS  PubMed  Google Scholar 

  7. Lathrop SK, Bloom SM, Rao SM et al (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250–254. https://doi.org/10.1038/nature10434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Russler-Germain EV, Rengarajan S, Hsieh CS (2017) Antigen-specific regulatory T-cell responses to intestinal microbiota. Mucosal Immunol 10:1375–1386. https://doi.org/10.1038/mi.2017.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weiss JM, Bilate AM, Gobert M et al (2012) Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosagenerated induced Foxp3+ T reg cells. J Exp Med 209:1723–1742. https://doi.org/10.1084/jem.20120914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sefik E, Geva-Zatorsky N, Oh S et al (2015) Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349:993–997. https://doi.org/10.1126/SCIENCE.AAA9420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Geuking MB, Cahenzli J, Lawson MAE et al (2011) Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34:794–806. https://doi.org/10.1016/j.immuni.2011.03.021

    Article  CAS  PubMed  Google Scholar 

  12. Atarashi K, Tanoue T, Shima T et al (2011) Induction of colonic regulatory T cells by indigenous clostridium species. Science 331:337–341. https://doi.org/10.1126/science.1198469

    Article  CAS  PubMed  Google Scholar 

  13. Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 107:12204–12209. https://doi.org/10.1073/pnas.0909122107

    Article  PubMed  PubMed Central  Google Scholar 

  14. Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–455. https://doi.org/10.1038/nature12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450. https://doi.org/10.1038/nature12721

    Article  CAS  PubMed  Google Scholar 

  16. Hang S, Paik D, Yao L et al (2019) Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576:143–148. https://doi.org/10.1038/s41586-019-1785-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Campbell C, McKenney PT, Konstantinovsky D et al (2020) Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581:475–479. https://doi.org/10.1038/s41586-020-2193-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song X, Sun X, Oh SF et al (2020) Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577:410–415. https://doi.org/10.1038/s41586-019-1865-0

    Article  CAS  PubMed  Google Scholar 

  19. Kim KS, Hong S-W, Han D et al (2016) Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351:858–863. https://doi.org/10.1126/science.aac5560

    Article  CAS  PubMed  Google Scholar 

  20. Reikvam DH, Erofeev A, Sandvik A et al (2011) Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS One 6:1–13. https://doi.org/10.1371/journal.pone.0017996

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Eiji Miyauchi for helpful comments and Dr. Peter D. Burrows for editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ohno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Takeuchi, T., Ohno, H. (2023). Analysis of Peripherally Derived Treg in the Intestine. In: Ono, M. (eds) Regulatory T-Cells. Methods in Molecular Biology, vol 2559. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2647-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2647-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2646-7

  • Online ISBN: 978-1-0716-2647-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics