Skip to main content

Quantification of Protein Exit at the Trans-Golgi Network

  • Protocol
  • First Online:
Golgi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2557))

  • 1423 Accesses

Abstract

With one-third of all newly synthesized proteins entering the secretory pathway, correct protein sorting is essential for cellular homeostasis. In the last three decades, researchers have developed numerous biochemical, genetic, and cell biological approaches to study protein export and sorting from the trans-Golgi network (TGN). However, accurately quantifying protein transport from one compartment to the next in the secretory pathway has been challenging. The Retention Using Selective Hooks (RUSH) system is a method that allows monitoring trafficking of a protein of interest in real time, similar to a pulse-chase experiment but without the need of radiolabeling. Accurate calculations, however, are necessary and currently lacking. Here, we combine the RUSH system with live cell imaging to quantify and calculate half lives. We exemplify our approach using a soluble secreted protein (LyzC). This system will benefit membrane trafficking researchers by adding numbers to protein export and comparing the export kinetics of different cargoes and variating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo Y, Sirkis DW, Schekman R (2014) Protein sorting at the trans-Golgi network. Annu Rev Cell Dev Biol 30:169–206

    Article  CAS  Google Scholar 

  2. Hanulova M, Weiss M (2012) Protein sorting and membrane-mediated interactions. Biophys Rev 4:117–124

    Article  CAS  Google Scholar 

  3. Di Martino R, Sticco L, Luini A (2019) Regulation of cargo export and sorting at the trans-Golgi network. FEBS Lett 593:2306–2318

    Article  Google Scholar 

  4. Ladinsky MS, Mastronarde DN, Mcintosh JR et al (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149

    Article  CAS  Google Scholar 

  5. Keller P, Toomre D, Diaz E et al (2001) Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nat Cell Biol 3:140–149

    Article  CAS  Google Scholar 

  6. Kienzle C, Von Blume J (2014) Secretory cargo sorting at the trans-Golgi network. Trends Cell Biol 24:584–593

    Article  CAS  Google Scholar 

  7. Griffiths G, Simons K (1986) The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234:438–443

    Article  CAS  Google Scholar 

  8. De Matteis MA, Luini A (2008) Exiting the Golgi complex. Nat Rev Mol Cell Biol 9:273–284

    Article  Google Scholar 

  9. Folsch H, Ohno H, Bonifacino JS et al (1999) A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 99:189–198

    Article  CAS  Google Scholar 

  10. Munro S (1995) An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J 14:4695–4704

    Article  CAS  Google Scholar 

  11. Welch LG, Munro S (2019) A tale of short tails, through thick and thin: investigating the sorting mechanisms of Golgi enzymes. FEBS Lett 593:2452–2465

    Article  CAS  Google Scholar 

  12. Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5:483–525

    Article  CAS  Google Scholar 

  13. Bretscher MS, Munro S (1993) Cholesterol and the Golgi apparatus. Science 261:1280–1281

    Article  CAS  Google Scholar 

  14. Rayner JC, Pelham HR (1997) Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast. EMBO J 16:1832–1841

    Article  CAS  Google Scholar 

  15. Quiroga R, Trenchi A, Gonzalez Montoro A et al (2013) Short transmembrane domains with high-volume exoplasmic halves determine retention of Type II membrane proteins in the Golgi complex. J Cell Sci 126:5344–5349

    CAS  Google Scholar 

  16. Von Blume J, Duran JM, Forlanelli E et al (2009) Actin remodeling by ADF/cofilin is required for cargo sorting at the trans-Golgi network. J Cell Biol 187:1055–1069

    Article  Google Scholar 

  17. Von Blume J, Alleaume AM, Cantero-Recasens G et al (2011) ADF/cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1. Dev Cell 20:652–662

    Article  Google Scholar 

  18. Kienzle C, Basnet N, Crevenna AH et al (2014) Cofilin recruits F-actin to SPCA1 and promotes Ca2+−mediated secretory cargo sorting. J Cell Biol 206:635–654

    Article  CAS  Google Scholar 

  19. Crevenna AH, Blank B, Maiser A et al (2016) Secretory cargo sorting by Ca2+−dependent Cab45 oligomerization at the trans-Golgi network. J Cell Biol 213:305–314

    Article  CAS  Google Scholar 

  20. Deng Y, Pakdel M, Blank B et al (2018) Activity of the SPCA1 calcium pump couples sphingomyelin synthesis to sorting of secretory proteins in the trans-Golgi network. Dev Cell 47:464–478 e468

    Article  CAS  Google Scholar 

  21. Hecht TK, Blank B, Steger M et al (2020) Fam20C regulates protein secretion by Cab45 phosphorylation. J Cell Biol 219

    Google Scholar 

  22. Jamieson JD, Palade GE (1967) Intracellular transport of secretory proteins in the pancreatic exocrine cell. I Role of the peripheral elements of the Golgi complex. J Cell Biol 34:577–596

    Article  CAS  Google Scholar 

  23. Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. I Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67:835–851

    Article  CAS  Google Scholar 

  24. Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215

    Article  CAS  Google Scholar 

  25. Balch WE, Dunphy WG, Braell WA et al (1984) Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 39:405–416

    Article  CAS  Google Scholar 

  26. Scales SJ, Pepperkok R, Kreis TE (1997) Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90:1137–1148

    Article  CAS  Google Scholar 

  27. Presley JF, Cole NB, Schroer TA et al (1997) ER-to-Golgi transport visualized in living cells. Nature 389:81–85

    Article  CAS  Google Scholar 

  28. Boncompain G, Perez F (2012) Synchronizing protein transport in the secretory pathway. Curr Protoc Cell Biol Chapter 15:Unit 15 19

    Google Scholar 

  29. Pakdel M, Pacheco-Fernandez N, Von Blume J (2021) Retention Using Selective Hooks (RUSH) cargo sorting assay for live-cell vesicle tracking in the secretory pathway using HeLa cells. Bio Protoc 11:e3958

    Article  Google Scholar 

  30. Sun X, Tie HC, Chen B et al (2020) Glycans function as a Golgi export signal to promote the constitutive exocytic trafficking. J Biol Chem 295:14750–14762

    Article  CAS  Google Scholar 

  31. Jimenez-Rojo N, Leonetti MD, Zoni V et al (2020) Conserved functions of ether lipids and sphingolipids in the early secretory pathway. Curr Biol 30:3775–3787 e3777

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia von Blume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tran, M.L., Kim, Y., von Blume, J. (2023). Quantification of Protein Exit at the Trans-Golgi Network. In: Wang, Y., Lupashin, V.V., Graham, T.R. (eds) Golgi. Methods in Molecular Biology, vol 2557. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2639-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2639-9_35

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2638-2

  • Online ISBN: 978-1-0716-2639-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics