Skip to main content
Log in

Protein sorting and membrane-mediated interactions

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Sorting of membrane proteins is of vital importance for living cells. Indeed, roughly one-third of a eukaryotic cell’s proteome consists of peripheral and transmembrane proteins. These need to be properly distributed and dynamically maintained at distinct locations in the compartmentalized cell, and one may wonder how proteins determine where, when, and how to travel to reach a specific organelle. While specific binary interactions between proteins have been invoked in explaining the trafficking and sorting processes, a more active role of lipids in this context has become visible in recent years. In particular, membrane-mediated interactions have been suggested to serve as a robust physicochemical mechanism to facilitate protein sorting. Here, we will review some recent insights into these aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrami L, Kunz B, Iacovache I, van der Goot FG (2008) Palmitoylation and ubiquitination regulate exit of the wnt signaling protein lrp6 from the endoplasmic reticulum. Proc Natl Acad Sci USA 105:5384–5389

    Article  PubMed  CAS  Google Scholar 

  • Alberts B (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  • Aridor M, Traub LM (2002) Cargo selection in vesicular transport: the making and breaking of a coat. Traffic 3:537–546

    Article  PubMed  CAS  Google Scholar 

  • Bagatolli LA, Gratton E (1999) Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys J 77:2090–2101

    Google Scholar 

  • Bagatolli LA, Gratton E (2000a) A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: a two-photon fluorescence microscopy study. Biophys J 79:434–447

    Article  PubMed  CAS  Google Scholar 

  • Bagatolli LA, Gratton E (2000b) Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 78:290–305

    Article  PubMed  CAS  Google Scholar 

  • Barlowe C (1995) Copii: a membrane coat that forms endoplasmic reticulum-derived vesicles. FEBS Lett 369:93–96

    Article  PubMed  CAS  Google Scholar 

  • Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824

    Article  PubMed  CAS  Google Scholar 

  • Benichou O, Chevalier C, Klafter J, Meyer B, Voituriez R (2010) Geometry-controlled kinetics. Nat Chem 2:472–477

    Article  PubMed  CAS  Google Scholar 

  • Bernardino de la Serna J, Oradd G, Bagatolli LA, Simonsen AC, Marsh D, Lindblom G, Perez-Gil J (2009) Segregated phases in pulmonary surfactant membranes do not show coexistence of lipid populations with differentiated dynamic properties. Biophys J 97:1381–1389

    Article  PubMed  CAS  Google Scholar 

  • Boal D (2002) Mechanics of the cell. Cambridge University Press, Cambridge

  • Bretscher MS, Munro S (1993) Cholesterol and the golgi-apparatus. Science 261:1280–1281

    Article  PubMed  CAS  Google Scholar 

  • de Meyer F, Venturoli M, Smit M (2008) Molecular simulations of lipid-mediated protein-protein interactions. Biophys J 95:1851–1865

    Google Scholar 

  • Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162

    Article  PubMed  CAS  Google Scholar 

  • Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4(3):181–191

    Article  PubMed  CAS  Google Scholar 

  • Elsner M, Hashimoto H, Simpson JC, Cassel D, Nilsson T, Weiss M (2003) Spatiotemporal dynamics of the COPI vesicle machinery. EMBO Rep 4:1000–1004

    Article  PubMed  CAS  Google Scholar 

  • Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  PubMed  CAS  Google Scholar 

  • Fidorra M, Garcia A, Ipsen JH, Hartel S, Bagatolli LA (2009) Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: a quantitative fluorescence microscopy imaging approach. Biochim Biophys Acta 1788(10):2142–2149

    Article  PubMed  CAS  Google Scholar 

  • Forster R, Weiss M, Zimmermann T, Reynaud EG, Verissimo F, Stephens DJ, Pepperkok R (2006) Secretory cargo regulates the turnover of COPII subunits at single ER exit sites. Curr Biol 16:173–179

    Article  PubMed  CAS  Google Scholar 

  • Fullekrug J, Suganuma T, Tang BL, Hong W, Storrie B, Nilsson T (1999) Localization and recycling of gp27 (hp24gamma3): complex formation with other p24 family members. Mol Biol Cell 10:1939–1955

    PubMed  CAS  Google Scholar 

  • Gordon VD, Beales PA, Zhao Z, Blake C, MacKintosh FC, Olmsted PD, Cates ME, Egelhaaf SU, Poon WCK (2006) Lipid organization and the morphology of solid-like domains in phase separating binary lipid membranes. J Physics Cond Matt 18:L415–L420

    Article  CAS  Google Scholar 

  • Heberle FA, Wu J, Goh SL, Petruzielo RS, Feigenson GW (2010) Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys J 99(10):3309–3318

    Article  PubMed  CAS  Google Scholar 

  • Heinzer S, Worz S, Kalla C, Rohr K, Weiss M (2008) A model for the self-organization of exit sites in the endoplasmic reticulum. J Cell Sci 121:55–64

    Article  PubMed  CAS  Google Scholar 

  • Hellmann M, Heermann DW, Weiss M (2011) Anomalous reaction kinetics and domain formation on crowded membranes. EPL. doi:10.1209/0295-5075/94/18002

  • Hughes BD, Pailthorpe BA, White LR (1981) The translational and rotational drag on a cylinder moving in a membrane. J Fluid Mech 110:349–372

    Article  CAS  Google Scholar 

  • Kirchhausen T (2000) Three ways to make a vesicle. Nat Rev Mol Cell Biol 1:187–198

    Article  PubMed  CAS  Google Scholar 

  • Kopelman R (1988) Fractal reaction-kinetics. Science 241:1620–1626

    Article  PubMed  CAS  Google Scholar 

  • Korlach J, Schwille P, Webb WW, Feigenson GW (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 96:8461–8466

    Article  PubMed  CAS  Google Scholar 

  • Krasnowska EK, Gratton E, Parasassi T (1998) Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Biophys J 74:1984–1993

    Article  PubMed  CAS  Google Scholar 

  • Lanoix J, Ouwendijk J, Lin CC, Stark A, Love HD, Ostermann J, Nilsson T (1999) GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J 18:4935–4948

    Article  PubMed  CAS  Google Scholar 

  • Lanoix J, Ouwendijk J, Stark A, Szafer E, Cassel D, Dejgaard K, Weiss M, Nilsson T (2001) Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. J Cell Biol 155:1199–1212

    Article  PubMed  CAS  Google Scholar 

  • Lewis BA, Engelman DM (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol 166:211–217

    Article  PubMed  CAS  Google Scholar 

  • Longo ML, Blanchette CD (2010) Imaging cerebroside-rich domains for phase and shape characterization in binary and ternary mixtures. Biochim Biophys Acta 1798:1357–1367

    Article  PubMed  CAS  Google Scholar 

  • Mancias JD, Goldberg J (2005) Exiting the endoplasmic reticulum. Traffic 6:278–285

    Article  PubMed  CAS  Google Scholar 

  • Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Natl Acad Sci USA 101:4083–4088

    Article  PubMed  CAS  Google Scholar 

  • Morozova D, Weiss M (2010) On the role of acylation of transmembrane proteins. Biophys J 98:800

    Article  PubMed  CAS  Google Scholar 

  • Morozova D, Guigas G, Weiss M (2011) Dynamic structure formation of peripheral membrane proteins. PLoS Comput Biol 7: e1002067

  • Mouritsen OG (2005) Life—as a matter of fat: the emerging science of lipidomics. Springer, Berlin

  • Munro S (1995) An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J 14(19):4695–4704

    PubMed  CAS  Google Scholar 

  • Munro S, Pelham HRB (1987) A c-terminal signal prevents secretion of luminal ER proteins. Cell 48(5):899–907

    Article  PubMed  CAS  Google Scholar 

  • Nielsen LK, Bjornholm T, Mouritsen OG (2000) Fluctuations caught in the act. Nature 404:352

    Article  PubMed  CAS  Google Scholar 

  • Nilsson T, Jackson M, Peterson PA (1989) Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic-reticulum. Cell 58(4):707–718

    Article  PubMed  CAS  Google Scholar 

  • Nilsson T, Pypaert M, Hoe MH, Slusarewicz P, Berger EG, Warren G (1993a) Overlapping distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells. J Cell Biol 120(1):5–13

    Article  PubMed  CAS  Google Scholar 

  • Nilsson T, Slusarewicz P, Hoe MH, Warren G (1993b) Kin recognition—a model for the retention of Golgi enzymes. FEBS Lett 330(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G, Nilsson T (1995) Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J Cell Sci 108:1617–1627

    PubMed  CAS  Google Scholar 

  • Ronchi P, Colombo S, Francolini M, Borgese N (2008) Transmembrane domain-dependent partitioning of membrane proteins within the endoplasmic reticulum. J Cell Biol 181:105–118

    Article  PubMed  CAS  Google Scholar 

  • Rottger S, White J, Wandall HH, Olivo JC, Stark A, Bennett EP, Whitehouse C, Berger EG, Clausen H, Nilsson T (1998) Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J Cell Sci 111:45–60

    PubMed  CAS  Google Scholar 

  • Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72(8):3111–3113

    Article  PubMed  CAS  Google Scholar 

  • Schmidt U, Weiss M (2010) Hydrophobic-mismatch induced clustering as a primer for protein sorting in the secretory pathway. Biophys Chem 151:34–38

    Google Scholar 

  • Schmidt U, Guigas G, Weiss M (2008) Cluster formation of transmembrane proteins due to hydrophobic mismatching. Phys Rev Lett 101:128104

    Google Scholar 

  • Semrau S, Idema T, Schmidt T, Storm C (2009) Membrane-mediated interactions measured using membrane domains. Biophys J 96:4906–4915

    Article  PubMed  CAS  Google Scholar 

  • Sharpe HJ, Stevens TJ, Munro S (2010) A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142(1):158–169

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  PubMed  CAS  Google Scholar 

  • Veatch SL, Keller SL (2005) Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta 1746:172–185

    Article  PubMed  CAS  Google Scholar 

  • Veatch SL, Gawrisch K, Keller SL (2006) Closed-loop miscibility gap and quantitative tie-lines internary membranes containing diphytanoyl PC. Biophys J 90:4428–4436

    Article  PubMed  CAS  Google Scholar 

  • Veatch SL, Cicuta P, Sengupta P, Honerkamp-Smith A, Holowka D, Baird B (2008) Critical fluctuations in plasma membrane vesicles. ACS Chem Biol 3:287–293

    Article  PubMed  CAS  Google Scholar 

  • Venturoli M, Smit B, Sperotto MM (2005) Simulation studies of protein-induced bilayer deformations and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophys J 88:1778

    Article  PubMed  CAS  Google Scholar 

  • Weiss M, Nilsson T (2003) A kinetic proof-reading mechanism for protein sorting. Traffic 4:65–73

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG grant WE4335/2-1.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanulová, M., Weiss, M. Protein sorting and membrane-mediated interactions. Biophys Rev 4, 117–124 (2012). https://doi.org/10.1007/s12551-012-0069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-012-0069-8

Keywords

Navigation