Skip to main content

Candidate Neural Activity for the Encoding of Temporal Content in Memory

  • Protocol
  • First Online:
Electrophysiological Recording Techniques

Part of the book series: Neuromethods ((NM,volume 192))

Abstract

We remember our lives in the context of time which allows us to predict upcoming events. However, there is no sensory organ or neural receptor specialized for measuring time. Instead, temporal content in memory arises from the integration of different time-varying neural activity profiles that can be found throughout the brain including, but not limited to, the medial prefrontal cortex and hippocampus memory system. In order to study temporal coding in memory, researchers have concentrated on extracellular recordings in freely behaving animals (including humans). This is because time is strictly an internal representation generated by the brain and has no single sensory or physical correlate. Thus, it necessary to use sophisticated approaches that can provide strong evidence for temporal content-based brain-behavior relationships. Without suitable behavioral measures, time-varying neural activity itself confounds the interpretation of any internal temporal representation. Additionally, time cannot be generated in the lab, thus diminishing experimental control, nor can it be easily separated from time-varying external covariates which themselves could be driving both behavioral and neural activity spuriously thought to be driven by the flow of time. In this chapter, we briefly review the literature on the neurobiology of time in the memory domain and summarize key criteria researchers have used to study temporal content. We first emphasize the behavioral aspects of studies that have focused on interval timing (scale = seconds), elapsed time memory (scale = minutes), and memory for sequences of events (temporal order). We then discuss three candidate temporally structured neural events that could underlie our ability to encode temporal content including ramping cells, time cells, and sequence cells. Ramping cells increase or decrease their activity leading up to an event or decision, time cells fire at circumscribed elapsed time intervals after an event, and sequence cells fire relative to the expected order of events. Ramping cells and time cells share key features with time perception, notably an increase in variance that is proportional to that magnitude of the elapsed time. Alternatively, sequence cells represent the flow of events as they had occurred in a match/mismatch fashion and thus are best conceptualized as contributing to memory retrievals. Lastly, we review some of basic systems architecture for time in memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tulving E (1986) Episodic and semantic memory: where should we go from here? Behav Brain Sci 9:573–577. https://doi.org/10.1017/S0140525X00047257

    Article  Google Scholar 

  2. Tulving E (1984) Multiple learning and memory systems. In: Lagerspetz KMJ, Niemi P (eds) Advances in psychology. North-Holland, Amsterdam, pp 163–184

    Google Scholar 

  3. Bartlett SFC, Bartlett FC, Bartlett FC (1995) Remembering: a study in experimental and social psychology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Bohannon JN, Symons VL (1992) Flashbulb memories: confidence, consistency, and quantity. In: Winograd E, Neisser U (eds) Affect and accuracy in recall, 1st edn. Cambridge University Press, New York, pp 65–92

    Chapter  Google Scholar 

  5. Christianson S-Á (1989) Flashbulb memories: special, but not so special. Mem Cogn 17:435–443. https://doi.org/10.3758/BF03202615

    Article  CAS  Google Scholar 

  6. Davidson PSR, Glisky EL (2002) Is flashbulb memory a special instance of source memory? Evidence from older adults. Mem Hove Engl 10:99–111. https://doi.org/10.1080/09658210143000227

    Article  Google Scholar 

  7. Patihis L, Frenda SJ, LePort AKR, Petersen N, Nichols RM, Stark CEL, McGaugh JL, Loftus EF (2013) False memories in highly superior autobiographical memory individuals. Proc Natl Acad Sci 110:20947–20952. https://doi.org/10.1073/pnas.1314373110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allen TA, Fortin NJ (2013) The evolution of episodic memory. Proc Natl Acad Sci 110:10379–10386. https://doi.org/10.1073/pnas.1301199110

    Article  PubMed  PubMed Central  Google Scholar 

  9. Allman MJ, Teki S, Griffiths TD, Meck WH (2014) Properties of the internal clock: first- and second-order principles of subjective time. Annu Rev Psychol 65:743–771. https://doi.org/10.1146/annurev-psych-010213-115117

    Article  PubMed  Google Scholar 

  10. Coull JT, Cheng R-K, Meck WH (2011) Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 36:3–25. https://doi.org/10.1038/npp.2010.113

    Article  PubMed  Google Scholar 

  11. Gibbon J, Church RM, Fairhurst S, Kacelnik A (1988) Scalar expectancy theory and choice between delayed rewards. Psychol Rev 95:102. https://doi.org/10.1037/0033-295X.95.1.102

    Article  CAS  PubMed  Google Scholar 

  12. Allen LM, Lesyshyn RA, O’Dell SJ, Allen TA, Fortin NJ (2020) The hippocampus, prefrontal cortex, and perirhinal cortex are critical to incidental order memory. Behav Brain Res 379:112215. https://doi.org/10.1016/j.bbr.2019.112215

    Article  PubMed  Google Scholar 

  13. Allen TA, Morris AM, Mattfeld AT, Stark CEL, Fortin NJ (2014) A sequence of events model of episodic memory shows parallels in rats and humans. Hippocampus 24:1178–1188. https://doi.org/10.1002/hipo.22301

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fortin NJ, Agster KL, Eichenbaum HB (2002) Critical role of the hippocampus in memory for sequences of events. Nat Neurosci 5:458–462. https://doi.org/10.1038/nn834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ng C-W, Elias GA, Asem JSA, Allen TA, Fortin NJ (2018) Nonspatial sequence coding varies along the CA1 transverse axis. Behav Brain Res 354:39–47. https://doi.org/10.1016/j.bbr.2017.10.015

    Article  PubMed  Google Scholar 

  16. Clayton NS, Dickinson A (1998) Episodic-like memory during cache recovery by scrub jays. Nature 395:272–274. https://doi.org/10.1038/26216

    Article  CAS  PubMed  Google Scholar 

  17. Eichenbaum H (2017) On the integration of space, time, and memory. Neuron 95:1007–1018. https://doi.org/10.1016/j.neuron.2017.06.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eichenbaum H, Fortin NJ (2005) Bridging the gap between brain and behavior: cognitive and neural mechanisms of episodic memory. J Exp Anal Behav 84:619–629. https://doi.org/10.1901/jeab.2005.80-04

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jacobs NS, Allen TA, Nguyen N, Fortin NJ (2013) Critical role of the Hippocampus in memory for elapsed time. J Neurosci 33:13888–13893. https://doi.org/10.1523/JNEUROSCI.1733-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kesner RP, Hunsaker MR (2010) The temporal attributes of episodic memory. Behav Brain Res 215:299–309. https://doi.org/10.1016/j.bbr.2009.12.029

    Article  PubMed  Google Scholar 

  21. Swallow KM, Barch DM, Head D, Maley CJ, Holder D, Zacks JM (2011) Changes in events alter how people remember recent information. J Cogn Neurosci 23:1052–1064. https://doi.org/10.1162/jocn.2010.21524

    Article  PubMed  Google Scholar 

  22. Swallow KM, Zacks JM, Abrams RA (2009) Event boundaries in perception affect memory encoding and updating. J Exp Psychol Gen 138:236. https://doi.org/10.1037/a0015631

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zwaan RA (1996) Processing narrative time shifts. J Exp Psychol Learn Mem Cogn 22:1196–1207. https://doi.org/10.1037/0278-7393.22.5.1196

    Article  Google Scholar 

  24. Zwaan RA, Langston MC, Graesser AC (1995) The construction of situation models in narrative comprehension: an event-indexing model. Psychol Sci 6:292–297. https://doi.org/10.1111/j.1467-9280.1995.tb00513.x

    Article  Google Scholar 

  25. Bradburn NM (1999) Temporal representation and event dating. In: The science of self-report: implications for research and practice. Psychology Press

    Google Scholar 

  26. Friedman WJ (2004) Time in autobiographical memory. Soc Cogn 22:591–605. https://doi.org/10.1521/soco.22.5.591.50766

    Article  Google Scholar 

  27. Janssen SMJ, Chessa AG, Murre JMJ (2006) Memory for time: how people date events. Mem Cogn 34:138–147. https://doi.org/10.3758/BF03193393

    Article  Google Scholar 

  28. Agster KL, Fortin NJ, Eichenbaum H (2002) The hippocampus and disambiguation of overlapping sequences. J Neurosci 22:5760–5768. https://doi.org/10.1523/JNEUROSCI.22-13-05760.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn Brain Res 21:139–170. https://doi.org/10.1016/j.cogbrainres.2004.06.012

    Article  Google Scholar 

  30. Matell MS, Meck WH (2000) Neuropsychological mechanisms of interval timing behavior. BioEssays 22:94–103. https://doi.org/10.1002/(SICI)1521-1878(200001)22:1<94::AID-BIES14>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  31. Horst NK, Laubach M (2012) Working with memory: evidence for a role for the medial prefrontal cortex in performance monitoring during spatial delayed alternation. J Neurophysiol 108:3276–3288. https://doi.org/10.1152/jn.01192.2011

    Article  PubMed  PubMed Central  Google Scholar 

  32. Narayanan NS, Laubach M (2009) Delay activity in rodent frontal cortex during a simple reaction time task. J Neurophysiol 101:2859–2871. https://doi.org/10.1152/jn.90615.2008

    Article  PubMed  PubMed Central  Google Scholar 

  33. Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6:755–765. https://doi.org/10.1038/nrn1764

    Article  CAS  PubMed  Google Scholar 

  34. Church RM (1984) Properties of the internal clock. Ann N Y Acad Sci 423:566–582. https://doi.org/10.1111/j.1749-6632.1984.tb23459.x

    Article  CAS  PubMed  Google Scholar 

  35. Roberts S (1981) Isolation of an internal clock. J Exp Psychol Anim Behav Process 7:242–268. https://doi.org/10.1037/0097-7403.7.3.242

    Article  CAS  PubMed  Google Scholar 

  36. Kononowicz TW, van Rijn H, Meck WH (2018) Timing and time perception. In: Stevens’ handbook of experimental psychology and cognitive neuroscience. American Cancer Society, pp 1–38

    Google Scholar 

  37. Lejeune H, Richelle M (1982) Fixed interval performance in turtle doves: a comparison with pigeons and rats. Behav Anal Lett 2:87–95

    Google Scholar 

  38. Paule MG, Meck WH, McMillan DE, McClure GY, Bateson M, Popke EJ, Chelonis JJ, Hinton SC (1999) The use of timing behaviors in animals and humans to detect drug and/or toxicant effects. Neurotoxicol Teratol 21:491–502. https://doi.org/10.1016/s0892-0362(99)00015-x

    Article  CAS  PubMed  Google Scholar 

  39. Wearden JH (1991) Do humans possess an internal clock with scalar timing properties? Learn Motiv 22:59–83. https://doi.org/10.1016/0023-9690(91)90017-3

    Article  Google Scholar 

  40. Kim J, Ghim J-W, Lee JH, Jung MW (2013) Neural correlates of interval timing in rodent prefrontal cortex. J Neurosci 33:13834–13847. https://doi.org/10.1523/JNEUROSCI.1443-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim J, Jung AH, Byun J, Jo S, Jung MW (2009) Inactivation of medial prefrontal cortex impairs time interval discrimination in rats. Front Behav Neurosci 3. https://doi.org/10.3389/neuro.08.038.2009

  42. Xu M, Zhang S, Dan Y, Poo M (2014) Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex. Proc Natl Acad Sci 111:480–485. https://doi.org/10.1073/pnas.1321314111

    Article  CAS  PubMed  Google Scholar 

  43. Gibbon J, Malapani C, Dale CL, Gallistel CR (1997) Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol 7:170–184. https://doi.org/10.1016/S0959-4388(97)80005-0

    Article  CAS  PubMed  Google Scholar 

  44. Yin B, Meck WH (2014) Comparison of interval timing behaviour in mice following dorsal or ventral hippocampal lesions with mice having δ-opioid receptor gene deletion. Philos Trans R Soc B Biol Sci 369:20120466. https://doi.org/10.1098/rstb.2012.0466

    Article  Google Scholar 

  45. Palombo DJ, Keane MM, Verfaellie M (2016) Does the hippocampus keep track of time? Hippocampus 26:372–379. https://doi.org/10.1002/hipo.22528

    Article  CAS  PubMed  Google Scholar 

  46. Rashid AJ, Yan C, Mercaldo V, Hsiang H-L(L), Park S, Cole CJ, Cristofaro AD, Yu J, Ramakrishnan C, Lee SY, Deisseroth K, Frankland PW, Josselyn SA (2016) Competition between engrams influences fear memory formation and recall. Science 353:383–387. https://doi.org/10.1126/science.aaf0594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davachi L, DuBrow S (2015) How the hippocampus preserves order: the role of prediction and context. Trends Cogn Sci 19:92–99. https://doi.org/10.1016/j.tics.2014.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  48. Peters J, Büchel C (2010) Neural representations of subjective reward value. Behav Brain Res 213:135–141. https://doi.org/10.1016/j.bbr.2010.04.031

    Article  CAS  PubMed  Google Scholar 

  49. Rubia K, Halari R, Christakou A, Taylor E (2009) Impulsiveness as a timing disturbance: neurocognitive abnormalities in attention-deficit hyperactivity disorder during temporal processes and normalization with methylphenidate. Philos Trans R Soc B Biol Sci 364:1919–1931. https://doi.org/10.1098/rstb.2009.0014

    Article  CAS  Google Scholar 

  50. Huttenlocher J, Hedges LV, Bradburn NM (1990) Reports of elapsed time: bounding and rounding processes in estimation. J Exp Psychol Learn Mem Cogn 16:196–213. https://doi.org/10.1037/0278-7393.16.2.196

    Article  CAS  PubMed  Google Scholar 

  51. MacDonald CJ, Fortin NJ, Sakata S, Meck WH (2014) Retrospective and prospective views on the role of the hippocampus in interval timing and memory for elapsed time. Timing Time Percept 2:51–61. https://doi.org/10.1163/22134468-00002020

    Article  Google Scholar 

  52. MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H (2011) Hippocampal “Time Cells” bridge the gap in memory for discontiguous events. Neuron 71:737–749. https://doi.org/10.1016/j.neuron.2011.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. James W (1890) The principles of psychology-volume I. 1618

    Google Scholar 

  54. Linley SB, Lamothe K, Mondragon VZ, Schreiber M, Vertes RP, Allen TA (2019) Thalamocortical interactions in memory for elapsed time, Chicago

    Google Scholar 

  55. Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44:109–120. https://doi.org/10.1016/j.neuron.2004.08.028

    Article  CAS  PubMed  Google Scholar 

  56. Radvansky GA, Zacks JM (2017) Event boundaries in memory and cognition. Curr Opin Behav Sci 17:133–140. https://doi.org/10.1016/j.cobeha.2017.08.006

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tulving E, Markowitsch HJ (1998) Episodic and declarative memory: role of the hippocampus. Hippocampus 8:198–204. https://doi.org/10.1002/(SICI)1098-1063(1998)8:3<198::AID-HIPO2>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  58. Josselyn SA, Köhler S, Frankland PW (2015) Finding the engram. Nat Rev Neurosci 16:521–534. https://doi.org/10.1038/nrn4000

    Article  CAS  PubMed  Google Scholar 

  59. Ranganath C, Hsieh L-T (2016) The hippocampus: a special place for time. Ann N Y Acad Sci 1369:93–110. https://doi.org/10.1111/nyas.13043

    Article  PubMed  Google Scholar 

  60. Eichenbaum H (2014) Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci 15:732–744. https://doi.org/10.1038/nrn3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cabeza R, Grady CL, Nyberg L, McIntosh AR, Tulving E, Kapur S, Jennings JM, Houle S, Craik FIM (1997) Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J Neurosci 17:391–400. https://doi.org/10.1523/JNEUROSCI.17-01-00391.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dere E, Huston JP, De Souza Silva MA (2005) Episodic-like memory in mice: simultaneous assessment of object, place and temporal order memory. Brain Res Protocol 16:10–19. https://doi.org/10.1016/j.brainresprot.2005.08.001

    Article  Google Scholar 

  63. DeVito LM, Eichenbaum H (2011) Memory for the order of events in specific sequences: contributions of the hippocampus and medial prefrontal cortex. J Neurosci 31:3169–3175. https://doi.org/10.1523/JNEUROSCI.4202-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fouquet C, Tobin C, Rondi-Reig L (2010) A new approach for modeling episodic memory from rodents to humans: the temporal order memory. Behav Brain Res 215:172–179. https://doi.org/10.1016/j.bbr.2010.05.054

    Article  PubMed  Google Scholar 

  65. Kesner RP, Gilbert PE, Barua LA (2002) The role of the hippocampus in memory for the temporal order of a sequence of odors. Behav Neurosci 116:286–290. https://doi.org/10.1037/0735-7044.116.2.286

    Article  PubMed  Google Scholar 

  66. Orlov T, Yakovlev V, Hochstein S, Zohary E (2000) Macaque monkeys categorize images by their ordinal number. Nature 404:77–80. https://doi.org/10.1038/35003571

    Article  CAS  PubMed  Google Scholar 

  67. Reeders PC, Hamm AG, Allen TA, Mattfeld AT (2021) Medial prefrontal cortex and hippocampal activity differentially contribute to ordinal and temporal context retrieval during sequence memory. Learn Mem 28:134–147. https://doi.org/10.1101/lm.052365.120

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jayachandran M, Linley SB, Schlecht M, Mahler SV, Vertes RP, Allen TA (2019) Prefrontal pathways provide top-down control of memory for sequences of events. Cell Rep 28:640–654.e6. https://doi.org/10.1016/j.celrep.2019.06.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Allen TA, Morris AM, Stark SM, Fortin NJ, Stark CEL (2015) Memory for sequences of events impaired in typical aging. Learn Mem 22:138–148. https://doi.org/10.1101/lm.036301.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Howard MW, Kahana MJ (2002) A distributed representation of temporal context. J Math Psychol 46:269–299. https://doi.org/10.1006/jmps.2001.1388

    Article  Google Scholar 

  71. Narayanan NS (2016) Ramping activity is a cortical mechanism of temporal control of action. Curr Opin Behav Sci 8:226–230. https://doi.org/10.1016/j.cobeha.2016.02.017

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tsao A, Sugar J, Lu L, Wang C, Knierim JJ, Moser M-B, Moser EI (2018) Integrating time from experience in the lateral entorhinal cortex. Nature 561:57–62. https://doi.org/10.1038/s41586-018-0459-6

    Article  CAS  PubMed  Google Scholar 

  73. Foster DJ, Wilson MA (2007) Hippocampal theta sequences. Hippocampus 17:1093–1099. https://doi.org/10.1002/hipo.20345

    Article  PubMed  Google Scholar 

  74. Liu Y, Tiganj Z, Hasselmo ME, Howard MW (2019) A neural microcircuit model for a scalable scale-invariant representation of time. Hippocampus 29:260–274. https://doi.org/10.1002/hipo.22994

    Article  PubMed  Google Scholar 

  75. Rolls ET, Mills P (2019) The generation of time in the hippocampal memory system. Cell Rep 28:1649–1658.e6. https://doi.org/10.1016/j.celrep.2019.07.042

    Article  CAS  PubMed  Google Scholar 

  76. Lebedev MA, O’Doherty JE, Nicolelis MAL (2008) Decoding of temporal intervals from cortical ensemble activity. J Neurophysiol 99:166–186. https://doi.org/10.1152/jn.00734.2007

    Article  PubMed  Google Scholar 

  77. Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38:317–327. https://doi.org/10.1016/S0896-6273(03)00185-5

    Article  CAS  PubMed  Google Scholar 

  78. Matell MS, Shea-Brown E, Gooch C, Wilson AG, Rinzel J (2011) A heterogeneous population code for elapsed time in rat medial agranular cortex. Behav Neurosci 125:54–73. https://doi.org/10.1037/a0021954

    Article  PubMed  PubMed Central  Google Scholar 

  79. Meck WH, Church RM, Matell MS (2013) Hippocampus, time, and memory – a retrospective analysis. Behav Neurosci 127:642–654. https://doi.org/10.1037/a0034201

    Article  PubMed  PubMed Central  Google Scholar 

  80. Naya Y, Suzuki WA (2011) Integrating what and when across the primate medial temporal lobe. Science 333:773–776. https://doi.org/10.1126/science.1206773

    Article  CAS  PubMed  Google Scholar 

  81. Sakon JJ, Naya Y, Wirth S, Suzuki WA (2014) Context-dependent incremental timing cells in the primate hippocampus. Proc Natl Acad Sci U S A 111:18351–18356. https://doi.org/10.1073/pnas.1417827111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Donnelly NA, Paulsen O, Robbins TW, Dalley JW (2015) Ramping single unit activity in the medial prefrontal cortex and ventral striatum reflects the onset of waiting but not imminent impulsive actions. Eur J Neurosci 41:1524–1537. https://doi.org/10.1111/ejn.12895

    Article  PubMed  PubMed Central  Google Scholar 

  83. Emmons EB, De Corte BJ, Kim Y, Parker KL, Matell MS, Narayanan NS (2017) Rodent medial frontal control of temporal processing in the dorsomedial striatum. J Neurosci 37:8718–8733. https://doi.org/10.1523/JNEUROSCI.1376-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Emmons E, Tunes-Chiuffa G, Choi J, Bruce RA, Weber MA, Kim Y, Narayanan NS (2020) Temporal learning among prefrontal and striatal ensembles. Cereb Cortex Commun:1:tgaa058. https://doi.org/10.1093/texcom/tgaa058

  85. Sugar J, Moser M-B (2019) Episodic memory: neuronal codes for what, where, and when. Hippocampus 29:1190–1205. https://doi.org/10.1002/hipo.23132

    Article  PubMed  Google Scholar 

  86. Howard MW, MacDonald CJ, Tiganj Z, Shankar KH, Du Q, Hasselmo ME, Eichenbaum H (2014) A unified mathematical framework for coding time, space, and sequences in the hippocampal region. J Neurosci 34:4692–4707. https://doi.org/10.1523/JNEUROSCI.5808-12.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pastalkova E, Itskov V, Amarasingham A, Buzsáki G (2008) Internally generated cell assembly sequences in the rat hippocampus. Science 321:1322–1327. https://doi.org/10.1126/science.1159775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. MacDonald CJ, Carrow S, Place R, Eichenbaum H (2013) Distinct hippocampal time cell sequences represent odor memories in immobilized rats. J Neurosci 33:14607–14616. https://doi.org/10.1523/JNEUROSCI.1537-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser M-B, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357. https://doi.org/10.1038/nature08573

    Article  CAS  PubMed  Google Scholar 

  90. Kraus BJ, Robinson RJ, White JA, Eichenbaum H, Hasselmo ME (2013) Hippocampal “Time Cells”: time versus path integration. Neuron 78:1090–1101. https://doi.org/10.1016/j.neuron.2013.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kraus BJ, Brandon MP, Robinson RJ, Connerney MA, Hasselmo ME, Eichenbaum H (2015) During running in place, grid cells integrate elapsed time and distance run. Neuron 88:578–589. https://doi.org/10.1016/j.neuron.2015.09.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Robinson NTM, Priestley JB, Rueckemann JW, Garcia AD, Smeglin VA, Marino FA, Eichenbaum HB (2017) Medial entorhinal cortex selectively supports temporal coding by hippocampal neurons. Neuron 94:677–688.e6. https://doi.org/10.1016/j.neuron.2017.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Manns JR, Howard MW, Eichenbaum H (2007) Gradual changes in hippocampal activity support remembering the order of events. Neuron 56:530–540. https://doi.org/10.1016/j.neuron.2007.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ginther MR, Walsh DF, Ramus SJ (2011) Hippocampal neurons encode different episodes in an overlapping sequence of odors task. J Neurosci 31:2706–2711. https://doi.org/10.1523/JNEUROSCI.3413-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hasselmo ME, Eichenbaum HB (2005) Hippocampal mechanisms for the context-dependent retrieval of episodes. Neural Netw Off J Int Neural Netw Soc 18:1172–1190. https://doi.org/10.1016/j.neunet.2005.08.007

    Article  Google Scholar 

  96. Levy WB (1996) A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus 6:579–590. https://doi.org/10.1002/(SICI)1098-1063(1996)6:6<579::AID-HIPO3>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  97. Allen TA, Salz DM, McKenzie S, Fortin NJ (2016) Nonspatial sequence coding in CA1 neurons. J Neurosci 36:1547–1563. https://doi.org/10.1523/JNEUROSCI.2874-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324. https://doi.org/10.1523/JNEUROSCI.20-11-04320.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bissonette GB, Martins GJ, Franz TM, Harper ES, Schoenbaum G, Powell EM (2008) Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J Neurosci 28:11124–11130. https://doi.org/10.1523/JNEUROSCI.2820-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Floresco SB, Block AE, Tse MTL (2008) Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190:85–96. https://doi.org/10.1016/j.bbr.2008.02.008

    Article  PubMed  Google Scholar 

  101. Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A (2017) The neural basis of reversal learning: an updated perspective. Neuroscience 345:12–26. https://doi.org/10.1016/j.neuroscience.2016.03.021

    Article  CAS  PubMed  Google Scholar 

  102. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  CAS  Google Scholar 

  103. Broadbent NJ, Squire LR, Clark RE (2006) Reversible hippocampal lesions disrupt water maze performance during both recent and remote memory tests. Learn Mem 13:187–191. https://doi.org/10.1101/lm.134706

    Article  PubMed  PubMed Central  Google Scholar 

  104. Dede AJO, Frascino JC, Wixted JT, Squire LR (2016) Learning and remembering real-world events after medial temporal lobe damage. Proc Natl Acad Sci 113:13480–13485. https://doi.org/10.1073/pnas.1617025113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Eichenbaum H (2017) Time (and space) in the hippocampus. Curr Opin Behav Sci 17:65–70. https://doi.org/10.1016/j.cobeha.2017.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tulving E (2002) Episodic memory: from mind to brain. Annu Rev Psychol 53:1–25. https://doi.org/10.1146/annurev.psych.53.100901.135114

    Article  PubMed  Google Scholar 

  107. Clewett D, Davachi L (2017) The Ebb and flow of experience determines the temporal structure of memory. Curr Opin Behav Sci 17:186–193. https://doi.org/10.1016/j.cobeha.2017.08.013

    Article  PubMed  PubMed Central  Google Scholar 

  108. DuBrow S, Davachi L (2013) The influence of context boundaries on memory for the sequential order of events. J Exp Psychol Gen 142:1277–1286. https://doi.org/10.1037/a0034024

    Article  PubMed  PubMed Central  Google Scholar 

  109. DuBrow S, Davachi L (2016) Temporal binding within and across events. Neurobiol Learn Mem 134:107–114. https://doi.org/10.1016/j.nlm.2016.07.011

    Article  PubMed  PubMed Central  Google Scholar 

  110. Palombo DJ, Reid AG, Thavabalasingam S, Hunsberger R, Lee ACH, Verfaellie M (2020) The human medial temporal lobe is necessary for remembering durations within a sequence of events but not durations of individual events. J Cogn Neurosci 32:497–507. https://doi.org/10.1162/jocn_a_01489

    Article  PubMed  Google Scholar 

  111. Kumaran D, Maguire EA (2006) An unexpected sequence of events: mismatch detection in the human hippocampus. PLoS Biol 4:e424. https://doi.org/10.1371/journal.pbio.0040424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hales JB, Israel SL, Swann NC, Brewer JB (2009) Dissociation of frontal and medial temporal lobe activity in maintenance and binding of sequentially presented paired associates. J Cogn Neurosci 21:1244–1254. https://doi.org/10.1162/jocn.2009.21096

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hales JB, Brewer JB (2011) The timing of associative memory formation: frontal lobe and anterior medial temporal lobe activity at associative binding predicts memory. J Neurophysiol 105:1454–1463. https://doi.org/10.1152/jn.00902.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kesner RP (2005) Temporal processing of information: the role of the medial prefrontal cortex and hippocampus: theoretical comment on gilmartin and mcechron (2005). Behav Neurosci 119:1705–1709. https://doi.org/10.1037/0735-7044.119.6.1705

    Article  PubMed  Google Scholar 

  115. Gill PR, Mizumori SJY, Smith DM (2011) Hippocampal episode fields develop with learning. Hippocampus 21:1240–1249. https://doi.org/10.1002/hipo.20832

    Article  PubMed  Google Scholar 

  116. Mankin EA, Sparks FT, Slayyeh B, Sutherland RJ, Leutgeb S, Leutgeb JK (2012) Neuronal code for extended time in the hippocampus. Proc Natl Acad Sci 109:19462–19467. https://doi.org/10.1073/pnas.1214107109

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lewis PA, Meck WH (2012) Time and the sleeping brain. The Psychologist 25:594–597

    Google Scholar 

  118. Meck WH, Penney TB, Pouthas V (2008) Cortico-striatal representation of time in animals and humans. Curr Opin Neurobiol 18:145–152. https://doi.org/10.1016/j.conb.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  119. Shikano Y, Ikegaya Y, Sasaki T (2021) Minute-encoding neurons in hippocampal-striatal circuits. Curr Biol 31:1438–1449.e6. https://doi.org/10.1016/j.cub.2021.01.032

    Article  CAS  PubMed  Google Scholar 

  120. Chiba AA, Kesner RP, Reynolds AM (1994) Memory for spatial location as a function of temporal lag in rats: role of hippocampus and medial prefrontal cortex. Behav Neural Biol 61:123–131. https://doi.org/10.1016/s0163-1047(05)80065-2

    Article  CAS  PubMed  Google Scholar 

  121. Kesner RP, Novak JM (1982) Serial position curve in rats: role of the dorsal hippocampus. Science 218:173–175. https://doi.org/10.1126/science.7123228

    Article  CAS  PubMed  Google Scholar 

  122. Barker GRI, Warburton EC (2011) When is the hippocampus involved in recognition memory? J Neurosci 31:10721–10731. https://doi.org/10.1523/JNEUROSCI.6413-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ekstrom AD, Copara MS, Isham EA, Wang W, Yonelinas AP (2011) Dissociable networks involved in spatial and temporal order source retrieval. Neuro Image 56:1803–1813. https://doi.org/10.1016/j.neuroimage.2011.02.033

    Article  PubMed  Google Scholar 

  124. Ross RS, Brown TI, Stern CE (2009) The retrieval of learned sequences engages the hippocampus: evidence from fMRI. Hippocampus 19:790–799. https://doi.org/10.1002/hipo.20558

    Article  PubMed  PubMed Central  Google Scholar 

  125. Malik R, Li Y, Schamiloglu S, Sohal VS (2021) Top-down control of hippocampal signal-to-noise by prefrontal long-range inhibition. bioRxiv:2021.03.01.433441. https://doi.org/10.1101/2021.03.01.433441

  126. Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888:83–101. https://doi.org/10.1016/S0006-8993(00)03013-4

    Article  CAS  PubMed  Google Scholar 

  127. Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149–179. https://doi.org/10.1007/s00429-007-0150-4

    Article  PubMed  Google Scholar 

  128. Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242. https://doi.org/10.1002/cne.902900205

    Article  CAS  PubMed  Google Scholar 

  129. Uylings HBM, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146:3–17. https://doi.org/10.1016/j.bbr.2003.09.028

    Article  PubMed  Google Scholar 

  130. Vertes RP (2002) Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J Comp Neurol 442:163–187. https://doi.org/10.1002/cne.10083

    Article  PubMed  Google Scholar 

  131. Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4:829–839. https://doi.org/10.1038/nrn1201

    Article  CAS  PubMed  Google Scholar 

  132. Euston DR, Gruber AJ, McNaughton BL (2012) The role of medial prefrontal cortex in memory and decision making. Neuron 76:1057–1070. https://doi.org/10.1016/j.neuron.2012.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202. https://doi.org/10.1146/annurev.neuro.24.1.167

    Article  CAS  PubMed  Google Scholar 

  134. Tsuchida A, Fellows LK (2009) Lesion evidence that two distinct regions within prefrontal cortex are critical for n-back performance in humans. J Cogn Neurosci 21:2263–2275. https://doi.org/10.1162/jocn.2008.21172

    Article  PubMed  Google Scholar 

  135. Voytek B, Knight RT (2010) Prefrontal cortex and basal ganglia contributions to visual working memory. Proc Natl Acad Sci 107:18167–18172. https://doi.org/10.1073/pnas.1007277107

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wang G-W, Cai J-X (2006) Disconnection of the hippocampal–prefrontal cortical circuits impairs spatial working memory performance in rats. Behav Brain Res 175:329–336. https://doi.org/10.1016/j.bbr.2006.09.002

    Article  PubMed  Google Scholar 

  137. Hsieh L-T, Ranganath C (2015) Cortical and subcortical contributions to sequence retrieval: schematic coding of temporal context in the neocortical recollection network. Neuro Image 121:78–90. https://doi.org/10.1016/j.neuroimage.2015.07.040

    Article  PubMed  Google Scholar 

  138. Jones Catherine RG, Rosenkranz K, Rothwell John C, Jahanshahi M (2004) The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp Brain Res 158. https://doi.org/10.1007/s00221-004-1912-3

  139. Koch G, Oliveri M, Torriero S, Caltagirone C (2003) Underestimation of time perception after repetitive transcranial magnetic stimulation. Neurology 60:1844–1846. https://doi.org/10.1212/WNL.60.11.1844

    Article  PubMed  Google Scholar 

  140. Lewis PA, Miall RC (2003) Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia 41:1583–1592. https://doi.org/10.1016/s0028-3932(03)00118-0

    Article  CAS  PubMed  Google Scholar 

  141. Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323. https://doi.org/10.1038/85191

    Article  CAS  PubMed  Google Scholar 

  142. Sakurai Y, Takahashi S, Inoue M (2004) Stimulus duration in working memory is represented by neuronal activity in the monkey prefrontal cortex. Eur J Neurosci 20:1069–1080. https://doi.org/10.1111/j.1460-9568.2004.03525.x

    Article  PubMed  Google Scholar 

  143. Tiganj Z, Jung MW, Kim J, Howard MW (2017) Sequential firing codes for time in rodent medial prefrontal cortex. Cereb Cortex N Y NY 27:5663–5671. https://doi.org/10.1093/cercor/bhw336

    Article  Google Scholar 

  144. Tiganj Z, Cromer JA, Roy JE, Miller EK, Howard MW (2018) Compressed timeline of recent experience in monkey lPFC. J Cogn Neurosci 30:935–950. https://doi.org/10.1162/jocn_a_01273

    Article  PubMed  PubMed Central  Google Scholar 

  145. Barker GRI, Bird F, Alexander V, Warburton EC (2007) Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci 27:2948–2957. https://doi.org/10.1523/JNEUROSCI.5289-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Blumenfeld RS, Parks CM, Yonelinas AP, Ranganath C (2011) Putting the pieces together: the role of dorsolateral prefrontal cortex in relational memory encoding. J Cogn Neurosci 23:257–265. https://doi.org/10.1162/jocn.2010.21459

    Article  PubMed  PubMed Central  Google Scholar 

  147. Fuster JM (2001) The prefrontal cortex—An update: time is of the essence. Neuron 30:319–333. https://doi.org/10.1016/S0896-6273(01)00285-9

    Article  CAS  PubMed  Google Scholar 

  148. Hannesson DK, Howland JG, Phillips AG (2004) Interaction between perirhinal and medial prefrontal cortex is required for temporal order but not recognition memory for objects in rats. J Neurosci 24:4596–4604. https://doi.org/10.1523/JNEUROSCI.5517-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mitchell JB, Laiacona J (1998) The medial frontal cortex and temporal memory: tests using spontaneous exploratory behaviour in the rat. Behav Brain Res 97:107–113. https://doi.org/10.1016/S0166-4328(98)00032-1

    Article  CAS  PubMed  Google Scholar 

  150. Murray LJ, Ranganath C (2007) The dorsolateral prefrontal cortex contributes to successful relational memory encoding. J Neurosci 27:5515–5522. https://doi.org/10.1523/JNEUROSCI.0406-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shimamura AP, Janowsky JS, Squire LR (1990) Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia 28:803–813. https://doi.org/10.1016/0028-3932(90)90004-8

    Article  CAS  PubMed  Google Scholar 

  152. Petrides M (1991) Functional specialization within the dorsolateral frontal cortex for serial order memory. Proc R Soc Lond B Biol Sci 246:299–306. https://doi.org/10.1098/rspb.1991.0158

    Article  CAS  Google Scholar 

  153. Cowen SL, McNaughton BL (2007) Selective delay activity in the medial prefrontal cortex of the rat: contribution of sensorimotor information and contingency. J Neurophysiol 98:303–316. https://doi.org/10.1152/jn.00150.2007

    Article  PubMed  Google Scholar 

  154. Ramus SJ, Davis JB, Donahue RJ, Discenza CB, Waite AA (2007) Interactions between the orbitofrontal cortex and the hippocampal memory system during the storage of long-term memory. Ann N Y Acad Sci 1121:216–231. https://doi.org/10.1196/annals.1401.038

    Article  PubMed  Google Scholar 

  155. McAndrews MP, Milner B (1991) The frontal cortex and memory for temporal order. Neuropsychologia 29:849–859. https://doi.org/10.1016/0028-3932(91)90051-9

    Article  CAS  PubMed  Google Scholar 

  156. Dolleman-van der Weel MJ, Morris RGM, Witter MP (2009) Neurotoxic lesions of the thalamic reuniens or mediodorsal nucleus in rats affect non-mnemonic aspects of watermaze learning. Brain Struct Funct 213:329–342. https://doi.org/10.1007/s00429-008-0200-6

    Article  PubMed  Google Scholar 

  157. Prasad JA, Macgregor EM, Chudasama Y (2013) Lesions of the thalamic reuniens cause impulsive but not compulsive responses. Brain Struct Funct 218:85–96. https://doi.org/10.1007/s00429-012-0378-5

    Article  PubMed  Google Scholar 

  158. Chudasama Y, Passetti F, Rhodes SEV, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146:105–119. https://doi.org/10.1016/j.bbr.2003.09.020

    Article  CAS  PubMed  Google Scholar 

  159. Abela AR, Dougherty SD, Fagen ED, Hill CJR, Chudasama Y (2013) Inhibitory control deficits in rats with ventral hippocampal lesions. Cereb Cortex 23:1396–1409. https://doi.org/10.1093/cercor/bhs121

    Article  PubMed  Google Scholar 

  160. Prasad JA, Abela AR, Chudasama Y (2017) Midline thalamic reuniens lesions improve executive behaviors. Neuroscience 345:77–88. https://doi.org/10.1016/j.neuroscience.2016.01.071

    Article  CAS  PubMed  Google Scholar 

  161. Stachniak TJ, Ghosh A, Sternson SM (2014) Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 82:797–808. https://doi.org/10.1016/j.neuron.2014.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cassel J-C, Pereira de Vasconcelos A, Mi L, Cholvin T, Dalrymple-Alford JC, Vertes RP (2013) The reuniens and rhomboid nuclei: neuroanatomy, electrophysiological characteristics and behavioral implications. Prog Neurobiol 111:34–52. https://doi.org/10.1016/j.pneurobio.2013.08.006

    Article  PubMed  PubMed Central  Google Scholar 

  163. Griffin AL (2015) Role of the thalamic nucleus reuniens in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory. Front Syst Neurosci 9. https://doi.org/10.3389/fnsys.2015.00029

  164. Hallock HL, Wang A, Shaw CL, Griffin AL (2013) Transient inactivation of the thalamic nucleus reuniens and rhomboid nucleus produces deficits of a working-memory dependent tactile-visual conditional discrimination task. Behav Neurosci 127:860–866. https://doi.org/10.1037/a0034653

    Article  PubMed  PubMed Central  Google Scholar 

  165. Hembrook JR, Onos KD, Mair RG (2012) Inactivation of ventral midline thalamus produces selective spatial delayed conditional discrimination impairment in the rat. Hippocampus 22:853–860. https://doi.org/10.1002/hipo.20945

    Article  CAS  PubMed  Google Scholar 

  166. Viena TD, Linley SB, Vertes RP (2018) Inactivation of nucleus reuniens impairs spatial working memory and behavioral flexibility in the rat. Hippocampus 28:297–311. https://doi.org/10.1002/hipo.22831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ramanathan KR, Ressler RL, Jin J, Maren S (2018) Nucleus reuniens is required for encoding and retrieving precise, hippocampal-dependent contextual fear memories in rats. J Neurosci 38:9925–9933. https://doi.org/10.1523/JNEUROSCI.1429-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Furtak SC, Wei S-M, Agster KL, Burwell RD (2007) Functional neuroanatomy of the parahippocampal region in the rat: the perirhinal and postrhinal cortices. Hippocampus 17:709–722. https://doi.org/10.1002/hipo.20314

    Article  PubMed  Google Scholar 

  169. Kondo H, Witter MP (2014) Topographic organization of orbitofrontal projections to the parahippocampal region in rats. J Comp Neurol 522:772–793. https://doi.org/10.1002/cne.23442

    Article  PubMed  Google Scholar 

  170. Jenkins LJ, Ranganath C (2010) Prefrontal and medial temporal lobe activity at encoding predicts temporal context memory. J Neurosci 30:15558–15565. https://doi.org/10.1523/JNEUROSCI.1337-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tubridy S, Davachi L (2011) Medial temporal lobe contributions to episodic sequence encoding. Cereb Cortex N Y NY 21:272–280. https://doi.org/10.1093/cercor/bhq092

    Article  Google Scholar 

  172. Polyn SM, Kahana MJ (2008) Memory search and the neural representation of context. Trends Cogn Sci 12:24–30. https://doi.org/10.1016/j.tics.2007.10.010

    Article  PubMed  Google Scholar 

  173. Janssen P, Shadlen MN (2005) A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci 8:234–241. https://doi.org/10.1038/nn1386

    Article  CAS  PubMed  Google Scholar 

  174. Sauvage MM, Beer Z, Ekovich M, Ho L, Eichenbaum H (2010) The caudal medial entorhinal cortex: a selective role in recollection-based recognition memory. J Neurosci 30:15695–15699. https://doi.org/10.1523/JNEUROSCI.4301-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Allen TA, Furtak SC, Brown TH (2007) Single-unit responses to 22kHz ultrasonic vocalizations in rat perirhinal cortex. Behav Brain Res 182:327–336. https://doi.org/10.1016/j.bbr.2007.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kent BA, Brown TH (2012) Dual functions of perirhinal cortex in fear conditioning. Hippocampus 22:2068–2079. https://doi.org/10.1002/hipo.22058

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kholodar-Smith DB, Allen TA, Brown TH (2008) Fear conditioning to discontinuous auditory cues requires perirhinal cortical function. Behav Neurosci 122:1178–1185. https://doi.org/10.1037/a0012902

    Article  CAS  PubMed  Google Scholar 

  178. Wan H, Aggleton JP, Brown MW (1999) Different contributions of the hippocampus and perirhinal cortex to recognition memory. J Neurosci 19:1142–1114. https://doi.org/10.1523/JNEUROSCI.19-03-01142.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bussey TJ, Saksida LM, Murray EA (2005) The perceptual-mnemonic/feature conjunction model of perirhinal cortex function. Q J Exp Psychol Sect B 58:269–282. https://doi.org/10.1080/02724990544000004

    Article  Google Scholar 

  180. Murray EA, Richmond BJ (2001) Role of perirhinal cortex in object perception, memory, and associations. Curr Opin Neurobiol 11:188–193. https://doi.org/10.1016/S0959-4388(00)00195-1

    Article  CAS  PubMed  Google Scholar 

  181. Norman G, Eacott MJ (2004) Impaired object recognition with increasing levels of feature ambiguity in rats with perirhinal cortex lesions. Behav Brain Res 148:79–91. https://doi.org/10.1016/S0166-4328(03)00176-1

    Article  CAS  PubMed  Google Scholar 

  182. Bang SJ, Brown TH (2009) Perirhinal cortex supports acquired fear of auditory objects. Neurobiol Learn Mem 92:53–62. https://doi.org/10.1016/j.nlm.2009.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  183. Xiang J-Z, Brown MW (2004) Neuronal responses related to long-term recognition memory processes in prefrontal cortex. Neuron 42:817–829. https://doi.org/10.1016/j.neuron.2004.05.013

    Article  CAS  PubMed  Google Scholar 

  184. Xiang J-Z, Brown MW (1998) Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37:657–676. https://doi.org/10.1016/S0028-3908(98)00030-6

    Article  CAS  PubMed  Google Scholar 

  185. Lehn H, Steffenach H-A, van NM S, Veltman DJ, Witter MP, Håberg AK (2009) A specific role of the human hippocampus in recall of temporal sequences. J Neurosci 29:3475–3484. https://doi.org/10.1523/JNEUROSCI.5370-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hsieh L-T, Gruber MJ, Jenkins LJ, Ranganath C (2014) Hippocampal activity patterns carry information about objects in temporal context. Neuron 81:1165–1178. https://doi.org/10.1016/j.neuron.2014.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Winson J (1978) Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 201:160–163. https://doi.org/10.1126/science.663646

    Article  CAS  PubMed  Google Scholar 

  188. Dragoi G, Carpi D, Recce M, Csicsvari J, Buzsáki G (1999) Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat. J Neurosci Of Soc Neurosci 19:6191–6199

    Article  CAS  Google Scholar 

  189. Lee MG, Chrobak JJ, Sik A, Wiley RG, Buzsáki G (1994) Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience 62:1033–1047. https://doi.org/10.1016/0306-4522(94)90341-7

    Article  CAS  PubMed  Google Scholar 

  190. Serafin M, Williams S, Khateb A, Fort P, Mühlethaler M (1996) Rhythmic firing of medial septum non-cholinergic neurons. Neuroscience 75:671–675. https://doi.org/10.1016/0306-4522(96)00349-1

    Article  CAS  PubMed  Google Scholar 

  191. Unal G, Crump MG, Viney TJ, Éltes T, Katona L, Klausberger T, Somogyi P (2018) Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity. Brain Struct Funct 223:2409–2432. https://doi.org/10.1007/s00429-018-1626-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lisman JE, Jensen O (2013) The Theta-Gamma Neural Code. Neuron 77:1002–1016. https://doi.org/10.1016/j.neuron.2013.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wang Y, Romani S, Lustig B, Leonardo A, Pastalkova E (2015) Theta sequences are essential for internally generated hippocampal firing fields. Nat Neurosci 18:282–288. https://doi.org/10.1038/nn.3904

    Article  CAS  PubMed  Google Scholar 

  194. Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME (2011) Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332:595–599. https://doi.org/10.1126/science.1201652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Hasselmo ME, Stern CE (2014) Theta rhythm and the encoding and retrieval of space and time. Neuro Image 85:656–666. https://doi.org/10.1016/j.neuroimage.2013.06.022

    Article  PubMed  Google Scholar 

  196. Somogyi P, Katona L, Klausberger T, Lasztóczi B, Viney TJ (2014) Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus. Philos Trans R Soc B Biol Sci 369. https://doi.org/10.1098/rstb.2012.0518

  197. Allen LM, Jayachandran M, Viena TD, Su M, McNaughton BL, Allen TA (2020) RatHat: a self-targeting printable brain implant system. eNeuro 7. https://doi.org/10.1523/ENEURO.0538-19.2020

  198. Knierim JJ, Neunuebel JP, Deshmukh SS (2014) Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local–global reference frames. Philos Trans R Soc B Biol Sci 369(1635):1–7. https://doi.org/10.1098/rstb.2013.0369

    Article  Google Scholar 

  199. Mamad O, McNamara HM, Reilly RB, Tsanov M (2015) Medial septum regulates the hippocampal spatial representation. Front Behav Neurosci 9. https://doi.org/10.3389/fnbeh.2015.00166

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jayachandran, M., Allen, T.A. (2022). Candidate Neural Activity for the Encoding of Temporal Content in Memory. In: Vertes, R.P., Allen, T. (eds) Electrophysiological Recording Techniques. Neuromethods, vol 192. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2631-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2631-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2630-6

  • Online ISBN: 978-1-0716-2631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics